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Abstract

In this paper, we investigate and compare different credit scoring models, with

special attention paid to machine learning approaches outperforming traditional

models. We explore a recently proposed method called the PLTR model, which is

a combination of machine learning and traditional logistic regression. In addition,

we examine the models’ performance and analyze the economic impact for different

class weights. The main purpose of this paper was to identify the most effective

and practical approach for credit scoring in the Swedish retail banking context.

The findings suggest that the model that most accurately predicts defaults is the

random forest, but at a high cost of interpretability due to the models’ complexity.

According to our findings, the optimal substitute for the random forest is a penalized

logistic regression, as it compensates with interpretability, for slightly less accurate

predictions.
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1 Introduction

The indebtedness in Swedish households has been rising sharply in recent years, driven

partly by the increasing prevalence of consumption loans (Finansinspektionen 2022). In

2021, the total volume of consumer credit amounted to approximately four billion SEK,

where unsecured loans accounted for 52 percent. These loans provide households with

greater flexibility in spending, but they also carry significant future risks in interest pay-

ments and amortization. Especially during periods of escalating inflation, where house-

holds with significant debt face even greater vulnerability.

As demand for consumption loans increases, the market for loan brokers in Sweden

has grown rapidly in the last few years (Finansinspektionen 2022). Consumers can apply

for loans through intermediaries who connect them with various lenders. These brokers

receive commissions from lenders for each approved loan. However, the Swedish Finan-

cial Supervisory Authority (FI) has analyzed this market and identified potential risks

that could undermine consumer protection. Agreements between brokers and lenders

sometimes include provisions that prevent lenders from directly obtaining necessary in-

formation from consumers for proper credit assessments. Additionally, there are instances

where brokers impose requirements on lenders to approve a certain number of loans in

order to receive more loan referrals. This creates incentives for banks and other lenders to

grant loans to individuals who may not be able to repay them. As a result, it is essential

for lenders to implement a credit scoring system that can accurately determine borrowers’

ability to manage their debt and make timely payments (Finansinspektionen 2022). Such

a system must be reliable, sustainable, and able to assess risks associated with different

types of loans. By doing so, lenders can make informed decisions and promote financial

stability for themselves and their clients.

Traditionally, credit scoring models in retail banking have relied on logistic regression,

but recent developments in machine learning and AI have shown that ensemble methods

such as random forest can outperform older methods in predicting default probability.

However, such methods are often criticized for their lack of interpretability, which can

create difficulties for financial regulators seeking to ensure that lenders are making sound

and responsible decisions without discrimination (Dastile et al. 2020).

This thesis aims to investigate and compare different credit scoring models, including

both traditional logistic regression and more advanced methods such as random forest
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and classification trees. In addition, we also use a recent method called Penalized Logis-

tic Tree Regression (PLTR) proposed by Dumitrescu et al. (2022). We use a large dataset

that contains extensive financial and personal information on approved loan applications

at Collector Bank. The dataset is anonymized by excluding personally identifiable in-

formation in order to follow the credit scoring regulations in Sweden. The probability

of default is estimated for three different dependent variables: total defaults within the

whole dataset, defaults within 12 months, and defaults within 5 months. This is done in

order to identify if the effect of the variables differs depending on the time before the loan

defaults. Additionally, the models’ performances are analyzed for various class weights.

Examining the model’s performance with different class weights allows us to evaluate

its effectiveness in addressing the challenges posed by class imbalance. Furthermore, we

evaluate the economic impact of each model by considering the effect of different class

weights. By evaluating all the models’ performance in terms of accuracy, interpretability,

and other relevant factors, this study seeks to identify the most effective and practical

approach for credit scoring in the Swedish retail banking context. Ultimately, the goal

is to provide valuable insights and guidance for both lenders and regulators, helping to

balance the needs for profitability and risk management.

Our findings are in line with previous literature provided by Brown & Mues (2012),

Moscato et al. (2021), and Trivedi (2020). Without any class weight, the more advanced

methods, such as the random forest, clearly outperform the more simple methods based on

the logistic regression. In comparison to Dumitrescu et al. (2022), it can be inferred that

the PLTR has comparable performance to penalized logistic regression, inferior perfor-

mance compared to decision tree-based methods while outperforming the regular logistic

regression. When adding different class weights for the models, the PLTR and the penal-

ized logistic regression have more similar performance. The random forest still has the

best performance, but not far away from PLTR and the penalized logistic regression. The

suggested results from using class weights imply that lower class imbalance would result

in predicting defaults more accurately, but at the same time denying more applicants that

do not actually default (assuming the same cut-off strategy between different class imbal-

ances). To summarize our findings, using penalized logistic regression with a class weight

is an alternative to more advanced methods. The model shows a similar performance and

it is easier to interpret, making it less difficult to follow the Consumer Agency Guidelines

for credit scoring.

The thesis is organized as follows: Section 2 contains the literature review, which
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discusses previous studies on the subject of credit scoring. Section 3 explains and sum-

marizes the data from Collector Bank that is used in the thesis. Section 4 contains the

theory behind the used methods. In section 5, we explain the empirical strategy that we

use, and section 6 shows the results and the discussion. Lastly, section 7 includes the

conclusion and further research.

2 Literature review

In this section, we discuss previous literature on credit scoring, where we focus on six

main fields; classification models and their performance, data processing and variable

selection, data splitting and resampling, hyper-parameter optimization, ethical discussion

and regulation of credit scoring in Sweden. The first four subsections compare different

approaches in literature and their findings, whereas the last subsections discuss ethical

issues and regulations in the Swedish credit market.

2.1 Introduction of models

Classification models predict the category or class to which a certain observation belongs,

based on given variables. Among the models, one can find sophisticated machine learning

approaches and simpler approaches such as a logistic regression.

The logistic regression is the model used to predict the probability that an observation

belongs to a particular category. The model assumes that there is a linear relationship

between the dependent and independent variables, requiring less computational power

and allowing it to be trained on small datasets. This makes it a useful tool for situations

where interpretability and transparency are important, such as in the case of financial

risk analysis (Gareth et al. 2013).1

On the other hand of the complexity spectrum, classification methods such as tree-

based models, are conventionally referred to as machine learning. These models are

useful as they are flexible tools that can handle complex, non-linear relationships and

efficiently handle high-dimensional datasets. Tree based models can be divided into two

main categories: decision trees and ensemble methods such as random forests. A decision

tree divides sample data into subsets based on features of observations, which creates a

1interpretability in this thesis is defined as how inputs relate to output. In more advanced approaches

it is difficult to know the exact impact of a change in a variable on the outcome.
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tree. Thus, it recursively splits the data based on the values of given features, where each

node is a decision based on a specific feature and the leaf node represents the class of

the dependent variable. Random forests have the same logic as decision trees, but are

obtained by averaging multiple decision trees based on different subsets of data in order

to reduce overfitting and variance (Gareth et al. 2013).

However, random forests are considered to be a ”black box”. The approach is complex

and the results are hard to interpret which hinders the decision-making process. In order

to address the disadvantages of random forests, Dumitrescu et al. (2022) propose a new

method called penalized logistic tree regression (PLTR). This model uses information from

multiple decision trees to improve the performance of a logistic regression. In that way,

the PLTR model allows for non-linear effects that can arise in credit-scoring data while

preserving the interpretability of logistic regression and obtaining similar performance to

random forests.

Other machine learning approach include neural networks (NN), where the artificial

neural network (ANN) is the most simple NN. This machine-learning method mimics

the structure and function of the human brain. The networks can be thought of as

a sequence of non-linear models generating regressors for the model further down the

pipeline. Random forests are suited for structured datasets with many features, while

ANNs are better for complex problems where traditional ML methods may not be effective

(Gareth et al. 2013).2

2.2 Classification models and their performance

In practice, logistic regression is the most commonly used method for evaluating the

credit-worthiness of borrowers. This is due to the simplicity and transparency in its pre-

dictions as well as a long history of use. Nonetheless, the more sophisticated machine

learning models can be found to outperform the logistic regression (Dastile et al. 2020).

In fact, empirical evidence has shown that machine learning models have superior per-

formance compared to logistic regression when applied to credit scoring (Brown & Mues

2012, Trivedi 2020, Moscato et al. 2021, Kruppa et al. 2013, Dumitrescu et al. 2022).

2The most commonly used methods, NN included, are mentioned due to completeness. Although, we

do not use NN as one of the models in our thesis.
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Brown & Mues (2012) use Friedman’s test in order to compare the so-called area

under the curve score (AUC-score)3 with the findings that random forests outperform

other methods,4 especially when faced with a large class imbalance in the dataset.5 Since

a single decision tree relies on a single split criterion to partition the data, it may be

prone to overfitting and might not capture local characteristics that are not evident in

the dataset as a whole. By combining multiple trees and looking at different subsets of

data, random forest can capture the patterns and relationships that exist within subsets

of data (Gareth et al. 2013). Random forests are therefore able to capture more complex

and subtle relationships between the explanatory variables and the output variable. When

comparing models and their AUC score, Gini index, false-positive rates and false-negative

rates, the typical finding is that random forest have best the performance overall (Trivedi

2020, Moscato et al. 2021, Kruppa et al. 2013, Dumitrescu et al. 2022).

However, the supremacy of random forest is questioned by Baesens et al. (2003), Wang

et al. (2011), and Lessmann et al. (2015). Baesens et al. (2003) find that several classi-

fication techniques that use machine learning algorithms have similar level of accuracy,

effectiveness and overall performance. Specifically, support vector machines and neural

networks yield the best performances for their datasets. Lessmann et al. (2015) update

the study of Baesens et al. (2003) with more recently developed methods. Their overall

result is that support vector machines and neural networks yield the best performance in

terms of Pearson’s correlation coefficient and the area under the ROC curve. However,

other classification techniques provide performances that are quite competitive as well.

In contrast, Wang et al. (2011) find that bagging together with decision trees is the most

effective method with regards to average accuracy, false-positive rate, and false-negative

rate.

3The Reciever Operating Characteristic curve (ROC curve) displays the true positive rate against the

false positive rate for a binary classification model. The AUC-score assesses the discriminatory ability of

the predictions, by representing the area under the ROC curve. (Gareth et al. 2013).
4Brown & Mues (2012) test the following methods; logistic regression, decision trees, neural networks,

linear discriminant analysis, quadratic discriminant analysis, k-nearest neighbours, support vector ma-

chines.
5A large class imbalance occurs when the difference between the number of observations belonging to

different classes in a dataset is substantially large.
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2.3 Data processing and variable selection

One critical aspect of credit scoring is the inclusion of relevant variables that provide

insight into a customer’s creditworthiness. The data used for evaluation of credit scoring

models can either be privately or publicly available. When evaluating the performance of

credit scoring models, most studies use datasets that are publicly available (Trivedi 2020,

Dumitrescu et al. 2022, Dastile et al. 2020, Lessmann et al. 2015, Wang et al. 2011). The

publicly available datasets are adapted specifically for creating credit scoring models. As

mentioned by Dastile et al. (2020), the most frequently used real-life publicly available

datasets are the ‘German’ and ‘Australian’ credit datasets. Both of these datasets are

publicly available at the University of California, Irvine Machine Learning repository

(UCI). The ‘German’ Credit Risk dataset contains 1,000 entries with a total of nine

categorical or symbolic variables. Each data point represents a person who took a loan

from a bank. The ‘Australian’ dataset contains credit card applications. Names and

personal information have been removed from both the ‘German’ and the ‘Australian’

datasets. The Australian dataset differs from the German dataset in that it originally

contained missing values (5%). To handle this, the UCI preprocessed the data by replacing

the missing values with the mode (for categorical variables) or mean (for continuous

variables). In contrast, the German dataset did not have any missing values to begin

with. Lessmann et al. (2015), Brown & Mues (2012) and Wang et al. (2011) use both

datasets, while Trivedi (2020) only use the ‘German’ dataset.

There are also studies that use confidential data sources. Moscato et al. (2021) uses a

dataset from a real lending institution, which includes approximately 877,000 observations

and 151 features. In contrast to the ‘German’ and ‘Australian’ datasets, the dataset used

by Moscato et al. (2021) is considerably larger, both in terms of observations and number

of features.

The variables included in the most commonly used ‘German’ dataset are: age, gender,

occupation, housing, saving accounts, checking amount, credit amount, duration, and

purpose for applying for the loan.6 Studies have shown that men have a higher default

risk than women in various financial contexts, such as lending and credit. One reason

for this is that men tend to exhibit riskier financial behaviors (Cigsar & Deniz 2018).

6Saving accounts are bank accounts with interest, where the goal is to only store money without

transactions. Checking accounts are bank accounts for regular transactions such as purchases and bill

payments.
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If the applicant is married, a higher financial stability is expected. This is due to the

fact that spouses often share financial responsibilities, which reduces the probability of

default (Moscato et al. 2021). Homeownership status can also impact the probability of

default, as homeowners generally have more financial stability due to the opportunity to

build equity over time. Although, the financial stability is also dependent on if mortgages

have fixed interest rates. According to Greenberg et al. (2019), comparing credit profiles

of American renters and owners, individuals who have been approved for a mortgage are

generally more creditworthy.

Trivedi (2020) argues that preprocessing of data is important for the performance of

the models, this includes methods to handle missing values in the dataset. One solution,

used by Moscato et al. (2021), is to remove variables that have a missing value percentage

greater than 55%. The missing values that remain are then replaced with the variable

medians. In line with Moscato et al. (2021), Trivedi (2020) uses a similar method for

replacing missing values. But they replace missing values with the mean if the variable is

numeric. If the variable is non-numeric, the missing values are replaced with the mode.

Some sources opt to include all available data. For instance Dumitrescu et al. (2022),

Dastile et al. (2020) and Lessmann et al. (2015) do not use any specific feature selection

method. Since they use datasets that are adapted for credit scoring, they choose to include

all variables in the datasets. Moscato et al. (2021) investigate the correlation between

variables in order to decide which variables to include. They do this based on a correlation

matrix on the full dataset: the explanatory variables that have a too high correlation

with each other are dropped. Trivedi (2020) uses different feature selection techniques to

examine which variables have the largest effect on the probability of default. The feature

selection techniques used by Trivedi (2020) are information-gain, gain-ratio, and Chi-

square. Trivedi (2020) uses the top 15 variables that have the highest significance of the

association between the dependent and independent variables in the ’German’ dataset.

The variables with the highest significance are the type of apartment, concurrent credits,

gender and marital status, foreign worker, account balance, and payment status of the

previous credits.

2.4 Data splitting and resampling

Typically, data is split into a training and test subsamples to enable machine learning

approaches to learn patterns within the dataset and assess their ability to generalize to
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unseen data. Hence, the statistical learning method is trained to more accurately predict

the outcome of new observations based on patterns observed in the training sample. This

technique, known as data splitting, helps to prevent unnecessary biases and overfitting.

Resampling methods such as cross-validation play a crucial role in this process by repeat-

edly drawing samples from the training data and refitting the model (Gareth et al. 2013).

Previous literature use k-fold cross-validation (explained in section 4.2), which is used

to estimate the test error associated with the statistical learning method in order to

review its performance (Trivedi 2020, Brown & Mues 2012, Lessmann et al. 2015, Moscato

et al. 2021). The most commonly used number of folds are 5 or 10, since it leads to an

intermediate level of bias (Gareth et al. 2013).7

2.5 Model choice and hyperparameter tuning

Hyperparameters are parameters of a model that are not estimated, for most methods

they need to be set before training the model. The performance of a method is typically

sensitive to the choice of hyperparameters. By finding the best set of hyperparameters

the performance of a machine learning model can be drastically improved, both in terms

of effectiveness and accuracy (Yang & Shami 2020).

The most widely used methods for tuning hyperparameters are manual search, grid

search, and random search (Bergstra & Bengio 2012, Yang & Shami 2020). Of these,

manual testing is a rudimentary way to tune hyperparameters. It is also inefficient and it

requires a deep understanding of the algorithms. Manual search requires a lot of human

effort in order to tune the parameters for larger datasets, where there is a greater number

of hyperparameters to tune (Yang & Shami 2020, Probst et al. 2019). In contrast, grid

search is a more computationally intensive method in comparison to manual search. It

involves defining a grid of hyperparameters and evaluating the model performance for all

possible combinations of hyperparameters that are specified. A limitation of the method

is that it is time consuming due to it going through all possible combinations, and not

always able to detect a global optimum of continuous parameters. Grid search is therefore

7Trivedi (2020) and Moscato et al. (2021) choose to use 10 fold cross-validation. Moscato et al. (2021)

use 4-fold validation, whereas Trivedi (2020) use 3-fold validation and Brown & Mues (2012) use a 70:30

between the training and testing data. In contrast to earlier mentioned papers, Lessmann et al. (2015)

use two folds instead of 10.
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more useful for smaller numbers of categorical or discrete hyperparamaters(Yang & Shami

2020, Bergstra & Bengio 2012).

Finally, to optimize both continuous and discrete hyperparameters, random search

can be used. Random search is more efficient than grid search because it does not need

to examine every possible combination of hyperparameters. Instead, it samples random

combinations of hyperparameters from the search space. The hyperparameters are drawn

randomly, for example from a uniform distribution given pre-specified bounds. One draw-

back of the random search is that it is based on a random sampling, so there is no guar-

antee that it can find the optimal set of hyperparameters. Therefore, it is possible that

random search may overlook some areas of the hyperparameter space that are important

for achieving the best performance of the model. Yang & Shami (2020) find that the

most important parameters to tune for random forests are: the number of estimators,

maximum depth, minimum sample split, minimum sample leaf, and maximum features.

For the decision trees: criterion, maximum depth, and minimum sample split are the

most important parameters to tune.8

2.6 Ethics of credit scoring

Use of credit scoring models leads to a number of ethical issues, including concerns about

fairness, transparency, privacy and potential discrimination. One the one hand, new data

sources and advanced analysis techniques are being used to improve consumers’ access

to financial services, while making the process more efficient and less expensive. A more

accurate and fair credit scoring method could benefit both the customers and the banks,

with customers potentially receiving fairer interest rates and banks potentially increasing

their lending and profits (Gutiérrez-Nieto et al. 2016). However, like any innovation,

these developments can have unintended negative effects and raise ethical concerns about

introducing a potential bias in lending decisions (Purda & Ying 2022).

Allowing borrowers to provide additional demographic details lending platforms may

lead to biased lending decisions based on gender, ethnicity, appearance, or physical char-

8The number of estimators is the number of trees in the forest. Maximum depth refers to the maximum

number of splits allowed for in individual decision trees within the forest. The minimum sample split

is the minimum number of samples required to split an internal node. Minimum sample leaves are the

minimum number of samples required to be at a leaf node and maximum features are the number of

features to consider when looking for the best split.
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acteristics. Studies indicate that such bias can be both unintentional and intentional,

resulting in inappropriate and systematically biased lending decisions (Chen et al. 2017,

Duarte et al. 2012). Moreover, there is a risk that credit scoring may perpetuate existing

social and economic inequalities. For example, credit scoring algorithms may be biased

against certain groups, such as low-income or minority populations, who may have less

access to credit and other financial services. This bias can perpetuate a cycle of poverty

and exclusion from the financial system (Verma 2019, Barocas & Selbst 2016). Another

ethical concern is the potential for credit scoring to infringe on consumer privacy. Credit

scoring companies may collect and use large amounts of personal data, such as financial

and demographic information, to calculate credit scores. Consumers may not be aware

of how their personal data is being used and may not have control over how it is shared

or sold to other companies (Commission et al. 2019, Solove 2006).

2.7 Regulation for credit scoring in Sweden

Credit scoring has become an increasingly important tool for lenders in Sweden as they

seek to assess the creditworthiness of potential borrowers. While credit scoring can make

the lending process more efficient and less expensive, it also raises concerns about fairness,

transparency, and privacy. In response, regulators in Sweden have taken steps to promote

greater transparency and accountability in the credit scoring process. One important

development in credit scoring regulation in Sweden is the introduction of the General Data

Protection Regulation (GDPR) in 2018. The GDPR provides consumers with greater

control over their personal data and requires companies to obtain explicit consent before

collecting and using the data (Regulation 2018, Goddard 2017). This has important

implications for credit scoring, as lenders must now ensure that they have obtained consent

from consumers to collect and use their personal data in their models.

In addition to the GDPR, Sweden has implemented a number of other measures to

regulate credit scoring. For example, Swedish Financial Supervisory Authority (Finansin-

spektionen) has published guidelines on credit scoring that provide recommendations for

lenders on how to ensure that their credit scoring models are fair, transparent, and ac-

curate (Konsumenternas 2022).9 The guidelines recommend that lenders should use data

9The guidelines include that the models should take into account personal circumstances such as

family composition, housing sitation and debts. In addition, the lender should also take age into account.

It is important that young people do not risk taking on large debts early in life. In conclusion, the

individual should not risk suffering payment problems or financial vulnerability during the term of the
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that is relevant and up-to-date. In addition, lenders should be aware of any systemic biases

that may exist in the data, such as discrimination against certain ethnic or socioeconomic

groups, and take steps to eliminate or minimize those biases

Another important development in credit scoring regulation in Sweden is the introduc-

tion of the Credit Information Act (Kreditupplysningslagen) in 2018. This law regulates

the use of credit information and credit scoring in Sweden and provides consumers with

the right to access their credit reports and correct any errors or inaccuracies in the re-

ports. The law also requires credit scoring companies to be transparent about how they

collect and use credit information, and to provide consumers with information on how to

dispute errors in their credit reports (Kreditupplysningslag (1973:1173) 1973)

3 Data

3.1 Introduction of the sample

The underlying data is provided by Collector Bank. Collector Bank is a digital bank

specializing in financial services for enterprises and private customers and complements

traditional banks. Their private segment amounts to 31% of their total loan portfolio

where they offer both uncollateralized customer loans and credit cards. During our sample

period, Collector Bank lowered its cut-off strategy.10 This means that the current lending

policy makes them grant fewer loans, compared to their prior policy. Thus, this is a factor

that may affect our results.

In general, Collector Bank’s loan portfolio shows a higher proportion of female cus-

tomers and the average customer is of middle age. The income distribution among Col-

lector Bank customers mirrors the general Swedish population. However, a larger popu-

lation of low-middle-income households is apparent among the bank’s customers than in

the overall Swedish population. The underlying cause is that their portfolio has a smaller

proportion of customers with lower or non-existing income, which arises from Collector

Bank having minimum income requirements. Overall, the debt ratios of Collector Bank

customers tend to be high, where their debts typically consist of various types of commer-

credit (Konsumenternas 2022)
10A cut-off strategy refers to a threshold based on a score used to determine whether an applicant is

qualified to be granted a loan or not. The applicant will be denied if the applicant has a higher score

than a certain threshold. The score, in this case, is the probability of default.
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cial loans rather than mortgages. The explanation for this is that a significant proportion

of customers in the Collector Bank’s lending portfolio live in rental properties, which is

greater than the proportion of renters in the general population of Sweden.

3.2 Ethical overview of the sample

We use a large dataset that contains extensive financial and personal information on

approved loan applications at Collector Bank, where we carefully choose variables from

Collector Bank’s database based on previous literature. It is essential that we follow

the credit scoring regulations in Sweden, called GDPR, so that ethical issues such as

fairness, privacy, and potential discrimination are avoided. Consequently, the dataset is

anonymized by excluding personally identifiable information such as the Swedish personal

number and names of the applicants. This is to prevent the possibility of linking specific

individuals to their personal information given at the time of the application. In addition,

the dataset includes postal codes in order to be able to extend the dataset by matching

observation with the Swedish Police’s database on ’exposed areas’. In a 2021 report, the

Swedish Police assigns each postal code a risk category; risk areas, especially exposed risk

areas, and areas in danger of becoming a risk area.

The resulting dataset consists of loans that were paid out at the end of 2018 until the

beginning of 2023, and it includes only Swedish applicants.11 The dataset has a total of

168,113 rows, but some of the rows include both the applicant and the co-applicant.

3.3 Data processing

Initially, the resulting dataset is subjected to a filtering procedure. As previously men-

tioned we exclusively include Swedish applicants, and the reason behind this is that the

bank stopped its lending operations outside of Sweden in 2020. Thereafter, denied ap-

plications are excluded resulting in a dataset that only consists of loans that have been

granted and paid out. To avoid duplicates among the loans with a co-applicant, we ex-

clude the applicant with a higher default probability. This is achieved through sorting

the data based on an external risk forecast measure used by the bank.12 Subsequently,

the duplicate with the highest risk forecast is eliminated from the dataset.

11A Swedish applicant is a person with a Swedish personal number.
12The risk forecast measure is provided by UC, and it measures the risk involving the applicant receiving

a payment report request within 12 months.
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The overall dataset consists of loans that are active, have defaulted, or have been

fully re-paid. We focus on three cases when evaluating the probability of defaults; total

defaults, defaults within 12 months, and defaults within 5 months, which results in 3

different datasets. The ”total default” dataset consists of almost 42,000 observations.

This dataset only consists of applicants with an outcome; either they have defaulted or

the loan is fully repaid, resulting in active loans being dropped. The second dataset is

the ”12-month defaults”, which contains applicants that have an outcome at or after 12

months. This means that all applicants that are still active within the last 12 months

are dropped, resulting in approximately 62,400 observations. Lastly, the third dataset

is the ”5-month defaults” with almost 67,600 observations.13 This dataset contains the

applicants that have an outcome at or after the last 5 months, resulting in loans that

are active within the last 5 months being dropped. We are dropping the active loans

within each dataset since the survival time is unknown, which are the observations that

are beyond the time of the last observation. Removing loans with unknown survival time

is referred to as ”right-censoring” in literature. We acknowledge that right censoring can

lead to biased results since the ability to estimate the precise outcome is limited.

Categorical variables in the dataset are converted to continuous variables or dummies

depending on the categories (see Appendix 8). Classification models are able to handle

both categorical and continuous variables, but logistic regression models can only han-

dle continuous variables or dummies. Therefore, converting the categorical variables is

necessary in order to evaluate all models.

Table 1 shows both the number of missing values and the percentage of missing values

for each variable in the dataset. The table presents either none or a minimum amount of

missing values for the majority of the variables, as we removed the variables that exhibited

a proportion of missing values exceeding 30% from the dataset. Moreover, the missing

values shown in Table 1 are filled with values using the k-th nearest neighbor algorithm

(see Section 4.1 for details on the algorithm) with k=5.

13The defaults within 5 months include ”straight rollers”, which are the applicants that have pending

payments on their loans until they default.
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Table 1: Percentage of Missing Values for each variable

Number of missing values 5 month defualts 12 month defaults Total defualts

Age 0 (0.0%) 0 (0.0%) 0 (0.0%)

No.Cars 0 (0.0%) 0 (0.0%) 0 (0.0%)

No.Children 0 (0.0%) 0 (0.0%) 0 (0.0%)

No.Adults inhousehold 0 (0.0%) 0 (0.0%) 0 (0.0%)

CivilStatus 0 (0.0%) 0 (0.0%) 0 (0.0%)

Occupation 0 (0.0%) 0 (0.0%) 0 (0.0%)

UC AnnualIncome 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC CreditusedApartment 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC CreditusedHouse 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC CreditusedBlanco 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC NumberOfCreditors 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC NumberOfReportRequests 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC RiskForecast 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC CreditUsedRevolving 29 (0.0%) 24 (0.0%) 17 (0.0%)

UC CreditUsedPartPayment 29 (0.0%) 24 (0.0%) 17 (0.0%)

Role 0 (0.0%) 0 (0.0%) 0 (0.0%)

NumberOfApplicants 0 (0.0%) 0 (0.0%) 0 (0.0%)

ApplicationAmount 0 (0.0%) 0 (0.0%) 0 (0.0%)

RepaymentMonths 0 (0.0%) 0 (0.0%) 0 (0.0%)

ProbabilityOfDefault 0 (0.0%) 0 (0.0%) 0 (0.0%)

Municipal group 2023 0 (0.0%) 0 (0.0%) 0 (0.0%)

Exposed areas 3 (0.0%) 2 (0.0%) 1 (0.0%)

granted loweramount 0 (0.0%) 0 (0.0%) 0 (0.0%)

gender 0 (0.0%) 0 (0.0%) 0 (0.0%)

Debtratio blanco 31 (0.0%) 26 (0.0%) 19 (0.0%)

Debtratio morgage 31 (0.0%) 26 (0.0%) 19 (0.0%)

New blancodebt 0 (0.0%) 0 (0.0%) 0 (0.0%)

stated diff income 0 (0.0%) 0 (0.0%) 0 (0.0%)

Default 0 (0.0%) 0 (0.0%) 0 (0.0%)

3.4 Descriptive statistics

3.4.1 Descriptive statistics of the independent variables

For each of the three datasets, specific descriptive statistics have been established. Table

2 contains the number of observations, the mean, the median, and lastly the standard

deviation.
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Table 2: Descriptive Statistics of independent variables

Table 2 consists of descriptive statistics for the total default dataset, 12-month default

dataset, and 5-month default dataset. The description of variables is presented in Appendix

8. The financial variables; Annual income, Mortgages, blanco debt, credit card amounts, and

application amount, are expressed in Million SEK.

count mean std Median

Age 41956 45.08 12.73 45.0

No.Cars 41956 0.13 0.33 0.0

No.Children 41956 0.54 0.88 0.0

No.Adults inhousehold 41956 0.72 0.87 0.0

CivilStatus 41956 2.01 1.85 2.0

Occupation 41956 3.08 0.56 3.0

UC AnnualIncome 41939 0.40 0.18 0.36

UC CreditusedApartment 41939 0.15 0.54 0.0

UC CreditusedHouse 41939 0.32 0.86 0.0

UC CreditusedBlanco 41939 0.35 0.25 0.33

UC NumberOfCreditors 41939 5.41 2.68 5.0

UC NumberOfReportRequests 41939 7.7 6.5 6.0

UC RiskForecast 41939 4.41 3.95 3.3

UC CreditUsedRevolving 41939 0.03 0.05 0.02

UC CreditUsedPartPayment 41939 0.02 0.06 0.0

Role 41956 0.96 0.19 1.0

NumberOfApplicants 41956 1.05 0.22 1.0

ApplicationAmount 41956 0.18 0.16 0.1

RepaymentMonths 41956 118.17 51.13 120.0

Municipal group 2023 41956 5.56 2.25 6.0

Exposed areas 41955 0.42 0.87 0.0

granted loweramount 41956 0.22 0.41 0.0

gender 41956 0.39 0.49 0.0

Debtratio blanco 41937 0.87 0.54 0.89

Debtratio morgage 41937 0.66 2.26 0.0

New blancodebt 41956 0.07 0.25 0.0

stated diff income 41956 0.54 0.5 1.0

(a) Total defaults

count mean std Median

Age 62403 45.86 12.6 46.0

No.Cars 62403 0.12 0.32 0.0

No.Children 62403 0.52 0.88 0.0

No.Adults inhousehold 62403 0.69 0.87 0.0

CivilStatus 62403 1.99 1.83 2.0

Occupation 62403 3.09 0.55 3.0

UC AnnualIncome 62379 0.40 0.18 0.37

UC CreditusedApartment 62379 0.15 0.54 0.0

UC CreditusedHouse 62379 0.33 0.87 0.0

UC CreditusedBlanco 62379 0.36 0.26 0.34

UC NumberOfCreditors 62379 5.63 2.81 5.0

UC NumberOfReportRequests 62379 7.31 6.33 6.0

UC RiskForecast 62379 4.41 4.1 3.2

UC CreditUsedRevolving 62379 0.04 0.06 0.02

UC CreditUsedPartPayment 62379 0.02 0.06 0.0

Role 62403 0.94 0.24 1.0

NumberOfApplicants 62403 1.08 0.27 1.0

ApplicationAmount 62403 0.19 0.17 0.13

RepaymentMonths 62403 121.09 50.27 120.0

Municipal group 2023 62403 5.54 2.26 6.0

Exposed areas 62401 0.41 0.86 0.0

granted loweramount 62403 0.22 0.41 0.0

gender 62403 0.39 0.49 0.0

Debtratio blanco 62377 0.88 0.55 0.9

Debtratio morgage 62377 0.65 2.27 0.0

New blancodebt 62403 0.07 0.26 0.0

stated diff income 62403 0.55 0.5 1.0

(b) 12 month defaults

15



count mean std Median

Age 67577 45.93 12.54 46.0

No.Cars 67577 0.13 0.34 0.0

No.Children 67577 0.53 0.88 0.0

No.Adults inhousehold 67577 0.7 0.87 0.0

CivilStatus 67577 2.0 1.81 2.0

Occupation 67577 3.09 0.54 3.0

UC AnnualIncome 67548 0.41 0.18 0.37

UC CreditusedApartment 67548 0.15 0.56 0.0

UC CreditusedHouse 67548 0.34 0.90 0.0

UC CreditusedBlanco 67548 0.36 0.26 0.34

UC NumberOfCreditors 67548 5.64 2.82 5.0

UC NumberOfReportRequests 67548 7.33 6.39 6.0

UC RiskForecast 67548 4.48 4.19 3.2

UC CreditUsedRevolving 67548 0.04 0.06 0.02

UC CreditUsedPartPayment 67548 0.02 0.06 0.0

Role 67577 0.93 0.25 1.0

NumberOfApplicants 67577 1.08 0.28 1.0

ApplicationAmount 67577 0.19 0.17 0.13

RepaymentMonths 67577 121.43 50.19 120.0

Municipal group 2023 67577 5.55 2.26 6.0

Exposed areas 67574 0.41 0.86 0.0

granted loweramount 67577 0.22 0.42 0.0

gender 67577 0.39 0.49 0.0

Debtratio blanco 67546 0.89 0.55 0.91

Debtratio morgage 67546 0.67 2.36 0.0

New blancodebt 67577 0.07 0.26 0.0

stated diff income 67577 0.55 0.5 1.0

(c) 5 month defaults

Looking at the data, the average applicant is 45 years old and is married or cohabitat-

ing, with an annual income of approximately 400,000 SEK. In addition, the applicant has

a permanent occupation of more than 6 months and they live in a commuter municipality

near a big city. Furthermore, most of the applicants are women (60%). Only 4% of the

applicants are co-applying to the loan, whereas the rest are main applicants.

3.4.2 Descriptive statistics dependent variables

As mentioned, we have three different datasets (see section 3.3) in which the dependent

variable, default, is defined differently.

Table 3: Descriptive Statistics of Dependent variables

count mean std

Total defaults 41956 0.182 0.39

12m Defaults 62403 0.059 0.24

5m Defaults 67577 0.014 0.12
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Table 3 contains descriptive statistics of these dependent variables. ”Total defaults”

is represented by the defaulted applicants within the ”total default” dataset. The av-

erage percentage that defaults within this dataset is 18%. Correspondingly, the ”12m

defaults” refers to the applicants who have defaulted within 12 months, which accounts

for 6%. Lastly, the ”5m defaults” is the applicants that have defaulted within the last 5

months, representing 1.4% of the ”5m default” dataset. It is noticeable that the defaulted

applicants represent a small fraction within each dataset. Thus, all datasets exhibit a sig-

nificant class imbalance, especially the 12-month defaults and 5-month defaults.

3.5 Splitting the data into train and test samples

In order to control for overfitting, we split the data into two sub-samples; training and

test. The training subsample is used to train the models, whereas the five-fold cross-

validation is used in order to validate the results from training the models. Thereafter,

the models are tested on the test subsample.

Initially, the dataset is sorted according to the disbursement date of the loan. Sorting

the data based on time is important in order to avoid data leakage. It occurs when

information from the test sample is inadvertently used to train the model. Given events

and movement conditions that affect the whole population, the probability of default is

inherently dependent on time, and hence, the issue of data leakage is a fact. Consequently,

if the data is not sorted by time, there is a risk that the model recovers time patterns

from future data that it should not have access to, leading to misleading results during

evaluation. Sorting the data by time ensures that the model is only trained on past data

which is available at that time, then evaluating on ”future” data. This is also known as

pseudo-out-of-sample analysis.

After sorting based on time, we do the data splitting. We set aside 20% of the

most recent observations for the test set so that the remaining data is used to train the

model. Since we have three different datasets, there are slightly different timespans for

our training and test samples. These are shown in Table 4.
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Table 4: Time periods for each sample

Datasets Training set Test set

Total defaults 15/5/2019 - 20/8/2021 20/8/2021 - 1/2/2023

12m defaults 15/5/2019 - 2/9/2021 2/9/2021 - 1/2/2023

5m defaults 15/5/2019 - 2/11/2021 2/11/2021 - 1/2/2023

4 Theory and method

4.1 Missing values and K-nearest neighbour

In order to handle the missing values without removing them from the data, there are

two general approaches. Firstly, predictive models such as tree-based techniques can

specifically account for missing data. Alternatively, the missing data can be imputed

using the information within the data to estimate values based on other predictors (Kuhn

et al. 2013).

One popular imputation technique is the k-nearest neighbour (kNN), which we use in

this thesis. kNN finds observations within the dataset that are “closest” to the missing

values and averages these nearby points to fill the missing values.

kNN =
1

N
ΣXi ̸=j (1)

Given a positive integer k and a missing value for variable x within the dataset, the

k-nearest neighbor classifier first identifies the k points in the sample data that are closest

to this missing value based on variables without missing values, represented by N . It then

averages the values of N , to fill in the missing value (Kuhn et al. 2013). The advantage

of the kNN technique is that the imputed data is confined to be within the range of

the dataset values. However, it can be time-consuming as the entire dataset is usually

required every time a missing value needs to be imputed (Kuhn et al. 2013).

4.2 Cross-validation

One of the most commonly used re-sampling methods is cross-validation (refer to Section

3.5 for the data splitting process in this thesis). k-fold cross-validation involves dividing

the data into k equally sized subsets (or folds). Then, k−1 folds are used for training the
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model and one fold is used for validation. The process is then repeated k times and the

average performance across all k validation sets are then computed (Gareth et al. 2013).

If five-fold cross-validation is used, one of the groups represents the validation group and

the remaining four are set for training the model. Performance measures are computed on

the observations in the held-out fold. This procedure is repeated k times and each time, a

different group of observations is treated as a validation sample. The process results in k

estimates of the MSE and the k-fold cross-validation estimate is computed by averaging

these values:

CV(k) =
1

k
Σk

i=1MSEi. (2)

However, there is a bias-variance trade-off associated with the choice of k. This means

that decreasing k leads to overfitting and high biases, as the model is trained on a small set

of data. Whereas, increasing k could lead to lower biases and reduce overfitting, but higher

variance. This is because more folds may result in the models not capturing important

patterns, leading to higher variance and making the performance of the models poorer.

According to Gareth et al. (2013), the choice of k = 5 or k = 10 leads to an intermediate

level of bias.

4.3 Classification Methods

Prediction of the probability of default can be accomplished using a number of techniques.

Among these are classification models, for example, logistic regression, decision trees,

random forests, linear discriminant analysis, and, or kNN (Gareth et al. 2013). The theory

behind the methods that we use is carefully explained in this section. The methods used

are logistic regression, penalized logistic regression, PLTR, decision trees, and random

forests.

4.3.1 Logistic regression

Logistic regression is a linear model used to estimate the probability of a dependent

variable Y belonging to a particular binary category. However, since a linear regression

can potentially produce negative outcomes, it is necessary to transform the predictions of

logistic regression into valid probabilities. To achieve this, logistic regression employs a

specific function called the logistic function. This function maps the linear combination of

the independent variables, denoted as X, into a range between 0 and 1. By applying the
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logistic function to the linear predictions, we obtain valid probabilities, p(X), representing

the likelihood of the dependent variable falling into a particular category.

To transform the predictions of logistic regression the following logistic function is

used:

Pr(yi = 1|xi) = F (η(xi; β)) =
1

1 + exp(−η(xi; β))
, (3)

where F (.) is the logistic cumulative distribution functuon and η(xi; β) is the so-called

index function defined as:

η(xi; β) = β0 + Σp
j=1βjxi,j, (4)

where β = (β0, β1, ..., βp) is an unknown vector of parameters. The estimator β̂ is ob-

tained by maximizing the log-likelihood function. The intuition behind using maximum

likelihood is as follows: we seek estimates for βp such that the predicted probability of

default, Pr(yi = 1|x′
i), for each individual corresponds as closely as possible to the indi-

vidual’s observed default status. We try to find beta such that plugging these estimates

into the model for Pr(yi = 1|xi) yields a number close to one for the individuals who

default, and zero for the individuals who do not default. This can be formalized using

the likelihood function presented below:

L(yi; β) = Σn
i=1

{
yi log{F (η(xi; β))}+ (1− yi) log{1− F (η(xi; β))}

}
, (5)

where xi is the vector of predictor variables for the ith observation in the training dataset,

yi = 0 is when the customer defaults and yi = 1 represent the non-defaults.

A penalized logistic regression is when a penalty term is added to the criterion function.

The aim of penalization is to improve prediction performance by balancing the fit of the

data and the stability of the estimates. The two best-known penalty terms are the ridge

and lasso, however, this thesis only focuses on the lasso penalty (Gareth et al. 2013).

The Lasso penalty uses the sum of the absolute values of the parameters and shrinks the

coefficients toward zero. The Lasso penalty term is given by:

Lasso = λP (Θ) = λΣp
j=1|βj|, (6)

where P (Θ) is the penalty term and λ is a tuning parameter that controls the intensity

of the penalty.
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4.3.2 Decision trees

The second method we consider are decision trees. Tree-based methods are a type of

classifier that can be used for both regression (called regression trees) and classification

(called classification trees). Tree-based methods involve segmenting the predictor space

into simple regions. Since the set of splitting rules used to segment the predictor space

can be graphically represented by a tree, these types of approaches are known as decision

tree methods (Gareth et al. 2013).

Figure 1: Illustration of a decision tree

(a) Decision tree (b) Regions of predictor spaces

Figure 1a illustrates a decision tree for predicting the salary (expressed in thousands of dollars) of a baseball player. The tree

has two internal nodes and three terminal nodes, or leaves. Figure 1b illustrates the three-region partition for the observations

in the dataset from the decision tree.

To give an example, consider the case of a baseball player’s salary in Gareth et al.

(2013). The salary is based on the number of years that the baseball player has played

in the major leagues and the number of hits that the player has made in previous years.

Figure 1a shows the decision tree which consists of a series of splitting rules. The top first

split assigns observations having less than 4.5 years played in the major leagues to the left

branch. The model predicts that these players have an average salary of approximately

165,000 dollars. Looking at Figure 1b, these players are represented by the first region

R1. Players that have played equally or at least 4.5 years in the major league are assigned

to the right branch. These players are further grouped by the number of hits made in

previous years. The players with less than 117 hits are assigned to the left side represented

by the second region (R2) and those above (or equal to) 118 are assigned to the right
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side representing the third region (R3). Thus, the tree stratifies or segments the players

into three regions of predictor space. In tree analogy, these regions are known as terminal

nodes or leaves of the tree. The two points within the tree where the predictor space is

split are referred to as internal nodes, which in this case are represented by the cut-off

rules. The segments of the tree that connect the nodes are referred to as branches.

Individual decision trees allow for a lot of interpretability. In the example above,

the number of years playing in the major league is the most important variable when it

comes to predicting the salary as this is the first split. The explanation for this is that

those who are less experienced earn lower salaries. The number of hits does not affect the

salaries for the less experienced players, which is the case for the players that have more

experience. Here, the players that have more hits in previous years tend to have higher

salaries (Gareth et al. 2013).

The main difference between regression trees and classification trees is that regression

trees are used to predict a quantitative response variable, whereas classification trees

predict a qualitative response variable. For a regression tree, the predicted response for

an observation is given by the mean response of the training observations that belong to

the same terminal nodes. In contrast, the classification tree uses the majority rule for

predicting. Thus, both the class prediction corresponding to a particular terminal node

region and the class proportions among the training observations that fall into that region

is of interest for a classification tree. However, the task regarding building a classification

tree is similar to building a regression tree. The so-called recursive binary splitting is

typically used to grow both trees. This is a top-down, greedy approach. It is ‘top-down’

because it begins at the top of the tree and then successively splits the predictor space

and each split is indicated via two new branches further down in the tree. The decision

tree algorithm is considered ”greedy” because it selects the best split at each step based

only on the available predictors, without considering future steps. This approach may

not always produce the optimal tree, but it is computationally efficient and tends to work

well in practice for most datasets (Gareth et al. 2013).

The predictor Xj and threshold t for recursive binary splitting in a classification

tree are selected to maximize the reduction in classification error rate. This is done by

considering all possible combination values of Xj and t and choosing the split that yields

the greatest reduction, as measured by the criterion. The classification error rate is the

fraction of the training observations in that region that do not belong to the most common
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class. This can be given by the following equation.

E = 1−max
k

(p̂mk), (7)

where p̂mk represents the proportion of training observations in the mth region that are

from kth class. However, according to Gareth et al. (2013), classification error has some

drawbacks as it is not sufficiently sensitive for tree-growing. Therefore, other measures

such as the Gini index and entropy are preferable in practice. Firstly, the Gini index is

defined by:

G = ΣK
k=1p̂mk(1− p̂mk), (8)

which is a measure of total variance across the K classes. The Gini index takes on a small

value if all of the p̂mk are close to zero or one. For this reason, the Gini index is referred to

as a measure of node purity—a small value indicates that a node contains predominantly

observations from a single class. Alternatively, one can use entropy to grow a tree, which

is defined as:

D = −ΣK
k=1p̂mklog(p̂mk), (9)

where p̂mk lies between 0 and 1, which means that 0 ≤ −p̂mklog(p̂mk). Thus, entropy

takes on a value near zero if p̂mk are near zero or near one. By minimizing impurity,

both algorithms aim to create subsets that are as homogeneous as possible with respect

to their class labels.

If allowed to grow a lot, a tree can fully explain the training set, i.e., assign each

observation to its own terminal node. Then, the tree might be too complex and likely

to overfit the data, leading to poor test set performance. Hence, a smaller tree with

fewer splits might lead to higher variance, but better interpretability and smaller bias.

A way of achieving this is to prune the tree. This strategy involves growing a large tree

and then pruning it back in order to obtain a smaller subtree. The goal is to obtain

a subtree that leads to the lowest test error rate and limits overfitting (Gareth et al.

2013). Additionally, the problem of overfitting can be reduced by carefully choosing

hyperparameters (see Section 2.5). Such hyperparameters are the criterion, maximum

debt of the tree, the minimum number of samples required to split an internal node, the

minimum number of samples required to be at a leaf node, the number of features to

consider when looking for the best split, the maximum number of leaves and the quality

of the split.
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Decision trees for both regression and classification have numerous advantages over

more classical approaches such as linear regressions or other classifiers such as logistic

regressions. The advantage is that decision trees allow for capturing non-linear relation-

ships. It includes simplicity and interpretability, which make them useful for tasks where

it is important to understand the reasoning behind a decision. They can also handle

qualitative predictors without the need for dummy variables, and they can be easily vi-

sualized. However, decision trees do not always have the highest prediction accuracy

compared to other classifiers, which may limit their usefulness. Additionally, the trees

can be non-robust, which means that a small change in the data can cause a large change

in the final estimated tree. However, by aggregating many decision trees using methods

such as bagging, random forest, and boosting, the predictive performance of the trees can

be substantially improved (Gareth et al. 2013).

4.3.3 Random Forest

In order to reduce the variance of decision trees, one can use Bagged (Bootstrap Ag-

gregation) trees. It involves creating multiple decision trees on random subsets of the

training data. Each tree is grown independently, with no pruning, and all the trees are

then combined to produce a final prediction. The combination is achieved by averaging

or taking the majority vote of the predictions of the individual trees, resulting in reduced

sensitivity to outliers and noise in the data.

While bagged trees help reduce variance, they still exhibit some correlation among

the trees. Random forests, a variant of bagged trees, address this issue by introducing

randomization during the tree-building process. Rather than considering all predictors at

each split, only a random subset of predictors is utilized. This results in each tree being

built with a different subset of predictors, effectively reducing the correlation between the

trees (Gareth et al. 2013).

Random forests build multiple decision trees on subsets of the training data that are

created by random sampling with replacement. As the trees are built and each time a split

in a tree is considered, a random sample of m predictors is chosen as split candidates from

the full set of p predictors. The split is allowed to use only one of those m predictors. A

new sample of m predictors is taken at each split, where the most commonly used number

of predictors to include is m ≈ √
p (Gareth et al. 2013).

24



The motivation for using only a subset of predictors is to avoid having all trees rely

heavily on a single strong predictor, which would result in highly correlated predictions.

Averaging many highly correlated predictions would not substantially reduce variance

compared to a single tree. By considering only a subset of predictors at each split, random

forest forces the trees to use different predictors, ”decorrelating” them and resulting in

a less variable and typically more reliable average of predictions. On average, the subset

of predictors considered at each split excludes the strong predictor, which increases the

chances of the other predictors being used (Gareth et al. 2013).

Random forests introduce additional hyperparameters compared to decision trees.

These include the number of trees in the forest, the use of bootstrapping, and accu-

racy estimation using out-of-bag samples. These hyperparameters provide flexibility in

controlling the ensemble’s behavior and improving generalization (Gareth et al. 2013).

4.4 Penalized Logistic Tree Regression

The Penalized Logistic Tree Regression model (PLTR) is an extension of logistic regression

that incorporates non-linear effects of predictor variables through decision-tree structures.

The goal of the model is to improve credit scoring by better predicting the probability of

default, while still being easy to interpret.

PLTR is a logistic regression model that includes explanatory variables based on sin-

gle and two-step trees. The first step in constructing a PLTR model is to capture the

univariate threshold effects by creating p decision trees (one for each prediction) with

only one split to obtain these threshold effects. New columns of dummy variables are

then created for every predictive variable p, where each observation gets a value of 0 or 1

depending on which node they belong to. In the second step, we use decision trees with

two splits to capture bivariate threshold effects. Each bivariate decision tree generates at

least three binary variables, each associated with a terminal node. This step ensures that

all variables are combined at least once. We save these dummy variables representing

the combinations as new columns in our dataset. Finally, the logistic regression with

univariate and bivariate threshold effects has the following form:

P (yi = 1|V (j)
i,1 , V

(j,k)
i,2 ; θ) =

1

1 + exp[−η(V
(j)
i,1 , V

(j,k)
i,2 ; θ)]

, (10)

where
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η(V
(j)
i,1 , V

(j,k)
i,2 ; θ) = β0 +

p∑
j=1

αjxi +

p∑
j=1

βjV
(j)
i,1 +

p−1∑
j=1

p∑
k=j+1

γj,kV
(j,k)
i,2 . (11)

θ = (β0, α1, . . . , αp, β1, . . . , βp, γ1,2, . . . , γp−1,p) are the set of parameters to be esti-

mated, where βj are the coefficients for the one-step dummies, and γj are the coefficients

for the two-step dummies. The length of θ depends on the number of predictive vari-

ables, p. For example, when p=10, this leads to a total number of m=100 univariate and

bivariate threshold effects in the regression.

To prevent overfitting issues with a large number of predictors, one can rely on penal-

ization for both estimation and variable selection. In the PLTR method, a penalty term

is added to the log-likelihood which results in the following expression:

Lp(R
(j)
i,1 , V

(j,k)
i,1 , V

(j,k)
i,2 ; Θ) = −L(R

(j)
i,1 , V

(j,k)
i,1 , V

(j,k)
i,2 ; Θ) + λP (Θ). (12)

The adaptive Lasso estimator, proposed by Zou in 2006, is used by Dumitrescu et al.

(2022) instead of the regular Lasso estimator. They use this penalty term due to its oracle

property. This means that the adaptive Lasso applies a stronger penalty to coefficients

that have large magnitudes while reducing the penalty for coefficients that are smaller.

This adaptive behavior helps in improving the accuracy of coefficient estimates, making it

more effective in certain scenarios compared to the regular Lasso estimator. The adaptive

Lasso estimators are obtained as:

ΘB-ALasso(λ) = argmin(Θ−L(R
(j)
i,1 , V

(j,k)
i,1 , V

(j,k)
i,2 ; Θ) + λ

m∑
j=1

wj|θj|). (13)

where λ is the tuning parameter and P (Θ) =
∑m

j=1 wj|θj| is the penalty term.

4.5 Class Imbalance

Class imbalance in a dataset occurs when the distribution of samples across different

classes differ (Japkowicz & Stephen 2002). This is often a problem since the smaller

class is often of more interest and importance. In our case, the class of importance is the

defaults, which indeed is a minority class in our dataset. Class imbalances can significantly

impact the performance of models, as they can lead to biased predictions and reduced

accuracy.
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There are different aspects that affect the degree of model performance and how models

are influenced by class imbalance. One aspect could be that a smaller training dataset

would lead to a greater effect of class imbalances in classification models. To deal with

these kind of class imbalances, there are several proposed strategies. Firstly, the minority

class can either be oversampled or the majority class can be undersampled until the

classes are approximately equally represented. The dataset would, therefore, be modified

to create a more balanced distribution of classes. Alternatively, one can assign distinct

costs to the classification errors. This involves attaching different penalties for each type

of classification mistake. Lastly, one can bias the classification algorithm towards the

minority class when training the model. This can be done by adjusting the class weights

or modifying the loss function. The goal is to be able to learn what features are important

for both classes, not only the majority class. Due to this, the performance of the minority

class would be improved (Barandela et al. 2003).

4.6 Statistical measures of performance and interpretability

In this thesis we have chosen to focus on three performance measures; type I error and

type II error, ROC AUC score, and PCC score. Although, we also use the KS statistic

and the Brier score. In this section, the scores are presented and explained. The selection

of appropriate scores to assess model performance heavily relies on previous literature.

In our case, we can expect two types of mistakes: type I error and type II error. Either

the model can incorrectly assign an applicant who has not defaulted to the defaulted

category (type I error), or it can incorrectly assign the applicant that has defaulted to

the non-default category (type II error). Therefore, it is often of interest to show the

predictions of the applicants in a confusion matrix and to illustrate the correctness of the

categorical predictions. The confusion matrix indicates correct and incorrect predictions

for applicants, while the correctly classified proportions (PCC) represent the fraction of

accurately classified applicants within the dataset (Gareth et al. 2013). According to

Lessmann et al. (2015), PCC requires discrete class predictions, which are obtained by

comparing the probability of default to a threshold τ . In our case, the threshold is 0.5.

All applicants with a probability under 0.5 are assigned a value of 0 (non-defaults), and

1 (defaults) otherwise. The probabilities that are over the threshold are assigned to the

defaultable (’positive’) class, whereas those under the threshold are assigned to the non-

defaultable (’negative’) class. Thus, the type I errors are the false positive class, and the

type II error are the false negative class. A lower threshold leads to lower false positives,
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however, it increases the false negatives, and vice versa. (Gareth et al. 2013).

Figure 2: Illustration of a ROC curve

Figure 2 illustrates an example of a ROC curve. The perfect classifier

is when it correctly assigns ’positive’ class observations to the positive

class and has a true positive rate of 1 for all thresholds. The random

classifier returns random score values and has the same value for the

true positive rate and the false positive rate of 0.5 for all thresholds.

AUC is the area under the ROC curve.

A popular way to illustrate the relationship between the two types of errors for all

possible thresholds is the Receiver Operating Characteristics (ROC) curve. Figure 2

illustrates an example of a ROC curve. The overall performance of the classification,

summarized over the possible thresholds, is given by the area under the ROC curve

(AUC). AUC assesses the discriminatory ability of the predictions. The ROC curve

converging towards the left corner indicates a larger area under the curve (AUC), which

corresponds to better classifiers. Comparing different classifiers using the ROC curve and

AUC is useful because they consider all possible thresholds, offering a complete overview

of performance (Gareth et al. 2013).

An alternative measure that assesses the correctness of the categorical predictions is

the Kolmogorov-Smirnov (KS) statistic, which is also based on the probability of the

outcome, but considers a fixed reference point. The fixed reference point serves as a

benchmark for assessing the probability distribution of the outcome being measured. The

KS statistic is the maximum difference between the cumulative score distributions of

positive and negative classes (Lessmann et al. 2015).
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A different performance measure that is used in credit scoring studies is the Brier score

(BS), which is defined as the mean-squared error between the probability of x and the

target binary response variable. BS is a global assessment, similarly to the AUC, since it

considers the whole score distribution (Lessmann et al. 2015). For all the other mentioned

measures (KS-statistic, BS, AUC and PCC) higher score reflects better performance of the

model. However, in this case, a lower value of BS represents a better model (Dumitrescu

et al. 2022).

4.6.1 Calculating error rates

In order to calculate credit losses and opportunity costs we first need to calculate the error

rates. The false positive rate represents the proportion of negative instances (true nega-

tives) that are incorrectly classified as positive (false positives) out of the total number of

actual negative instances. In our case, this is when non-defaulted applicants are predicted

to default. The type I error rate, also known as the false positive rate, is calculated with

the following formula:

FP =

∑
False Positives∑

(False Positives + True Negatives)
(14)

The false negative rate represents the proportion of positive instances (true positives)

that are incorrectly classified as negative (false negatives) out of the total number of

actual positive instances. In our case this is when defaulted applicants are predicted to

not default. This is also known as the type II error rate and it is calculated with the

following formula:

FP =

∑
False Negatives∑

(False Negatives + True Negatives)
(15)

4.7 Economic measures of performance

In addition to examining the models’ performance for each weight, we also want to eval-

uate the economic impact. As the bank’s bottom line, we define the credit losses as the

predicted non-defaults that actually do default (type II error) and the opportunity costs

as the predicted defaults that do not default (type I error). The losses and revenues are

calculated in order to evaluate the trade-off between the opportunity costs and credit

losses for each model and class weight.
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The assumptions when calculating the revenues are that the loan would only be paid

at maturity and that it does not default. The calculated revenue is the sum of all interest

payments during a loan’s lifetime. Firstly, we assume monthly payments (PMT), which

are calculated using e.(16). The amortization is calculated by multiplying the monthly

interest rate (r) with the present value of the loan (PV). The interest payments are

calculated using the monthly interest rates and the duration of the loans in months (n).

PMT =
r · PV

1− (1 + r)−n
(16)

The monthly payment is then multiplied by the duration of the loan in order to get

the total payments for the lifetime of the loan. Lastly, the loan amount is subtracted in

order to retrieve only the interest payments and not the amortization.

Total Interest = (PMT · n)− PV (17)

Losses are calculated as the sum of the defaulted loans and principal future total

interest payments since we both lose the loan amount and the revenue from the loan. In

addition, we also assume that the recovery rate is zero.14

5 Empirical strategy

5.1 Predicting the probability of default

The probability of default is estimated for three different dependent variables: total

defaults within the whole dataset, total defaults within 12 months, and total defaults

within 5 months. This is done in order to identify if the effect of the variables differs

depending on the time before the loan defaults. In particular, we want to assess if there

are features that define straight rollers, i.e., loans that default after five months with no

payment, in comparison to a loan that defaults where a payment has been made. For each

case of defaults, we firstly apply each model to the training subsample in order to evaluate

if the model is accurately fitted, and secondly validate in order to review the performance.

Lastly, the models are assessed on the test subsample to obtain the performance of each

model.

14This is usually not true in practice, but scoring models should not take the recovery rate into account.
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5.1.1 Tuning hyperparameters

As mentioned, hyperparameters are tuned in order to increase the performance of the

models. In this thesis, we use the random search approach to achieve the tuning of

the hyperparameters for each model. The tuning is done separately for total defaults,

12-month defaults, and 5-month defaults.

The parameters are similar for decision trees and the random forest. The hyperpa-

rameters tuned in this thesis are the most common ones used for decision trees: the

maximum debt of the tree, the maximum number of leaves, the quality of the split, the

number of features to consider when looking for the best split, parameters that consider

the minimum number of samples required to split in an internal node, and the mini-

mum number of samples required to be in a leaf node. The random forest is tuned with

the same hyperparameters as mentioned, with the exception of the maximum number of

leaves and the addition of the number of trees in the forest. The tuning is done when

training the dataset with a five-fold cross-validation until we reach satisfactory results.

If the results differ substantially from the training and validation, this is an indication of

overfitting. Thus, the next step is to tune the hyperparameters such that the trade-off

between overfitting and performance from the cross-validation is maximized. When this

is achieved, the final step is to apply the tuned model to the test subsample.

The PLTR and the logistic regression have the same parameters that can be tuned.

The hyperparameters that are tuned for the PLTR is the penalty term and an algorithm

that is used in the optimization. In addition, we tune a logistic regression with a penalty

term in order to obtain the penalized logistic regression.

5.1.2 Class weighting

An issue encountered within our datasets is class imbalance, where the proportion of the

defaults is significantly lower compared to non-defaults. Specifically, the total defaults

contain roughly 18% defaults, the defaults within 12 months contain 6% defaults and the

defaults within 5 months contain merely 1.4% defaults. Consequently, our models tend to

mainly predict non-defaultable applicants due to the skewed distribution of the classes.

In order to address this, we have used different class weights that influence the models to

predict more defaults. Thus, we put higher weight on the minority class in order to see

whether the performance of our models improves. Tuning the class weights is beneficial

since we get a better overview of how type I and type II errors differ as the weight for the
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minority class changes.

For each model, with the same hyperparameters designed in the previous section,

we are testing different class weights on the training subsample in order to pick the

class weights that we consider to be most suitable. The class weights can be presented

as a percentage that reflects the importance of defaults within the dataset. A higher

weight percentage indicates that the minority class is considered more important, while a

lower weight percentage indicates less importance. All weights have the same percentage

weight for the total defaults, defaults within 12 months, and defaults within 5 months.

The resulting weight percentages for the minority class in this thesis are; balanced (both

classes are of equal importance), 45%, 40%, 35%, and 20%. Lastly, we compare the results

from these weights with results obtained without any class weights.

In the PLTR model, both the decision tree and the regression require the application

of class weighting. Initially, the previously stated weights are applied to the one-split

and two-step trees, resulting in distinct dummy variables for each weight. This is in

order to capture bivariate threshold effects for each weight. Finally, we apply the same

weights used in the decision trees to a penalized logistic regression, where the regression

is performed for each weight-specific dataset.

6 Results

The results are divided into three sections: Section 6.1, the total defaults; Section 6.2,

defaults occurring within 12 months; and Section 6.3, defaults occurring within 5 months.

Each section incorporates the importance of variables, the ROC curves, the accuracy

scores, and the error rates for each model. Furthermore, the accuracy scores and the

error rates are also presented for chosen class weights. We then present the opportunity

costs and interest losses that each model predicts for each class weight. In addition, we

compare the predictions from the models to the outcomes in Section 6.4.

6.1 Total Defaults

6.1.1 Importance of Variables

The tree-based models have the ability to rank features by importance when predicting

the probability of default. Accordingly, Figure 3 shows the ten most important variables
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for the random forest model, where the importance is based on how much including that

variable improves the model’s ability to accurately predict the probability of default. This

is also known as the Gini importance and is normalized so that it is comparable across

different variables. The variables that our models assume to be most important may

vary across the models. However, we find that the tree-based models have similar results

when it comes to which variables are considered the most important in the total defaults

dataset.

Figure 3: Importance of variables predicting total defaults

Figure 3 displays the top 10 features that the random forest model considers important when pre-

dicting defaults. The importance scores are based on the Gini importance which is normalized and

sum up to 100%. In our dataset, There are a total of 30 variables. The feature importance score

for a given feature is calculated as the reduction in the impurity of the tree when that feature is

used for splitting the data. In this figure, ”UC Creditusedblanco” is the current debt that is not

collateralized by the applicant at the disbursement date, and ”Granted loweramount” is whether

the applicant has been granted a lower amount than what they applied for.

As displayed in Figure 3, age, annual taxable income, UC risk forecast measure, and

application amount are the most important variables when predicting the total probability

of default, with an importance score of almost 0.09 each. Usually, a lower age and a

smaller application amount lead to a higher default risk. In addition, the duration of

the loan is of large importance, although, the duration has a high correlation with the

application amount. Providing a lower loan amount than requested by the customer
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increases the default probability. If the customer has an existing blanco debt (debt that

is not collateralized) or a signed credit card agreement when applying for the loan, a

higher default risk is expected. Lastly, the applicant’s gender and where they live are

important features as well. If the applicant lives in an exposed area, their default risk is

expected to be higher.

6.1.2 Performance results

Figure 4: ROC curve results for total defaults

The ROC curves depicted in 4 compare the ROC curves of using a balanced class weight in the dataset with the

ROC curves of using no class weights for the total defaults. The top row displays the results obtained by predicting

defaults on both the training and test sets without any class weight. In contrast, the bottom row exhibits the

results achieved by predicting defaults on both the training and test sets with a balanced class weight. Each line

in the graph is represented by a model, for example, the blue line represents the ROC curve from the random

forest.
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Figure 4 shows four different ROC curves for the total defaults. we compare the resulting

ROC curves without using any class weight to the ROC curves obtained when using

a balanced class weight (weight percentage of 50%). The results from the training set

are displayed on the left-hand side, whereas the results from the test set are shown on

the right-hand side. Considering the information in Figure 4, there is no significant

difference when using no class weight compared to using a balanced class weight for

the tree-based models, which is an indication that none of these models are sensitive to

class imbalances. The models that are based on the logistic regression do show small

improvements, indicating that these models are more sensitive to imbalances in datasets.

In addition, in all cases, there are noticeable differences between the performance in the

training set and the test set. This is especially true for the random forest, which has a

drastic decrease in performance out-of-sample. The Random forest model shows a clear

indication of overfitting.

To examine the performance in more detail, we present four different accuracy mea-

sures for each model without class weights and with balanced class weights in Table 5.

The model that has the best performance according to all scores, except the KS statistic,

is the random forest. However, we can again see that random forest differs the most

between the test and training datasets.

Table 5: Accuracy measures

(a) No class weights

Training set Results Test set Results

Model PCC ROC AUC BS KS statistic Model PCC ROC AUC BS KS statistic

Random Forest 81.66% 88.22% 11.86% 18.00% Random Forest 89.24% 78.50% 9.10% 10.02%

Decision Tree 80.14% 70.08% 14.67% 18.45% Decision Tree 88.92% 72.21% 9.68% 9.49%

Log Regression 79.92% 63.29% 15.55% 19.84% Log Regression 89.01% 68.27% 9.96% 10.94%

Penalized LR 79.92% 63.29% 15.55% 79.94% Penalized LR 89.01% 68.27% 9.97% 10.94%

PLTR 80.17% 72.35% 14.40% 16.79% PLTR 88.11% 77.44% 9.89% 6.01%

(b) Balanced class weight

Training set Results Test set Results

Model PCC ROC AUC BS KS statistic Model PCC ROC AUC BS KS statistic

Random Forest 78.89% 87.18% 16.16% 12.41% Random Forest 77.87% 78.13% 16.01% 12.83%

Decision Tree 57.39% 70.77% 21.90% 34.02% Decision Tree 59.88% 72.90% 20.48% 34.74%

Log Regression 63.37% 64.47% 23.21% 17.97% Log Regression 71.78% 69.95% 20.99% 17.95%

Penalized LR 65.30% 71.40% 21.68% 79.94% Penalized LR 69.67% 76.84% 19.82% 24.03%

PLTR 65.67% 72.39% 21.37% 21.50% PLTR 63.98% 77.36% 22.55% 31.26%

Table 5 show the PCC, ROC AUC, BS and the KS statistics for the different models. The left side of the table represent the performance

results from the training dataset, while the left side show the performance result for the test dataset. Table (a) represent the accuracy

measures when using no class weight, whereas the table (b) shows the results when using a balanced class weight.

Looking at all the scores in general, both the PCC measure and the ROC AUC score
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have increased when predicting the test data. Especially the PCC score, since it has

increased by approximately 10 percentage points. This could be due to time variation

since our samples are sorted according to time. In addition, Collector Bank has changed

its credit policy between the period of training and test data, with a restriction of the

cut-off for granting a loan, which is expected to increase the variation further between the

datasets. Therefore, the samples in the training and test data are likely to have different

characteristics. In our case, this explains the increased accuracy in the test set: there

are fewer defaults due to a lower cut-off strategy, resulting in higher class imbalance and

increased PCC score because more non-defaults are classified correctly.

When looking more closely at the ROC AUC score, both for no class weights and

balanced class weights in table 5, random forest has the highest score followed by the

Decision tree and PLTR. These models are the best at minimizing the risk of false positives

and false negatives. In addition, the penalized logistic regression shows similar results

to the more complicated PLTR model when using a balanced class weight. Although,

the PLTR model has a higher ROC AUC score with a difference of approximately 0.5

percentage points on the test set. Focusing on the PCC score, the random forest has the

highest value followed by the logistic regression. Although the logistic regression presents

the lowest ROC AUC score, the high PCC score can rather be a result of predicting mainly

non-defaults due to the model being sensitive to class imbalance. Comparing the ROC

AUC scores of all the models, it is observed that the more advanced models generally

have higher scores, while the models that are easier to interpret tend to have lower scores.

6.1.3 Class weight results

Figures 5a and 5b show the percentage of the type I and type II errors for each model

at each class weight. Figure 5a shows the results for the training set, whereas Figure 5b

shows the resulting rates when predicting on the test set. The concept of Type I and

Type II errors can be approached from two different perspectives. Type I error arises

when the model incorrectly classifies non-defaulted applicants as defaulted. Thus, this

error can be described as the opportunity cost of the bank, as it represents the potential

revenue losses from rejected loan applications. Conversely, type II error refers to defaulted

applicants that are incorrectly classified as non-defaulted. This error can therefore be seen

as the bank’s risk aversion as it depends on the accuracy with which the bank seeks to

predict defaults. This means that higher prediction accuracy translates into a greater risk

aversion by the bank. By comparing the error rates for each class weight and model, one
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can observe which model the bank should use based on risk aversion.

Figure 5: Resulting error rates predicting total defaults

(a) training set (b) test set

Graphs 5a and 5b shows the error rates for each model and each class weight for the total defaults. The balanced weight is when

the different classes are assigned the same importance and the ’none’ represent no class weight. The 45% weight percentage is

when the minority class is assigned 45% importance, the 40% weight percentage assigns 40% importance to the minority class,

etc. The pink area is the type I error rate and the purple area represent the type II error rate. The sum of these areas represents

the total errors for each model and weight. The resulting error rates are displayed for both the training set and the test set.

In general, there is a large difference between the type I and type II errors when

using different class weights for each model. There is a distinct pattern in both graphs:

not accounting for class imbalance results in more type II errors and fewer type I errors.

Most of the models exhibit the lowest error rate when using a balanced class weight. At

this class weight, the credit losses are minimized, but the opportunity costs are at their

highest. It can be seen that the random forest has the lowest error rates on the training

set, followed by PLTR and penalized logistic regression. Although, when looking at the

test set, PLTR now shows lower error rates than the random forest. In addition, for the

higher class weights penalized logistic regression has lower (or similar) error rates than

PLTR.

In order to investigate the results from the class weights more thoroughly in terms of

performance, we present Table 6. This table shows the number of observations that falls

into the type I and type II error respectively, with the addition of the PCC accuracy and

AUC score.
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Table 6: Class weights performances on total defaults

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 5526 1424 79.29% 87.71% Balanced 1443 393 78.12% 78.17%

45% 3494 2106 83.32% 88.33% 45% 1443 488 82.77% 78.15%

40% 2180 3027 84.49% 87.44% 40% 632 566 85.72% 78.40%

30% 599 5836 80.83% 76.27% 30% 139 796 88.86% 77.48%

20% 54 6119 81.61% 88.17% 20% 30 876 89.20% 78.26%

None 58 6155 81.49% 87.48% None 27 874 89.26% 78.34%

(a) Random Forest

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 12859 1441 57.39% 70.77% Balanced 3141 226 59.88% 72.90%

45% 6383 3340 71.03% 69.98% 45% 3141 485 78.35% 72.57%

40% 5673 3524 72.60% 70.80% 40% 1316 495 78.42% 72.21%

30% 1501 5474 79.22% 70.10% 30% 410 706 86.70% 72.47%

20% 237 6428 80.14% 70.08% 20% 67 863 88.92% 72.21%

None 237 6428 80.14% 70.08% None 67 863 88.92% 72.21%

(b) Decision Tree

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 9369 2154 65.67% 72.39% Balanced 2823 200 63.98% 77.36%

45% 7133 2805 70.39% 72.39% 45% 2823 259 69.69% 77.40%

40% 4330 4642 73.27% 64.66% 40% 1027 581 80.84% 70.58%

30% 846 6177 79.08% 64.37% 30% 251 787 87.63% 70.48%

20% 503 6154 80.17% 72.35% 20% 246 752 88.11% 77.45%

None 510 6146 80.17% 72.35% None 247 751 88.11% 77.44%

(c) PLTR

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 9412 2239 65.29% 71.40% Balanced 2280 264 69.69% 76.84%

45% 7019 2931 70.36% 71.40% 45% 2280 346 74.89% 76.87%

40% 4998 3660 74.20% 71.40% 40% 1284 430 79.58% 76.90%

30% 824 6211 79.04% 64.18% 30% 125 860 88.26% 69.48%

20% 39 6700 79.92% 63.28% 20% 2 920 89.01% 68.26%

None 425 6298 79.97% 71.37% None 105 827 88.89% 76.95%

(d) Penalized Logistic Regression

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 9164 3131 63.37% 64.47% Balanced 1925 436 71.87% 69.72%

45% 6680 3866 68.58% 64.58% 45% 1925 543 78.24% 69.91%

40% 4435 4599 73.08% 64.56% 40% 740 645 83.50% 69.87%

30% 824 6212 79.04% 64.18% 30% 99 874 88.41% 69.29%

20% 39 6700 79.92% 63.28% 20% 1 920 89.03% 68.00%

None 41 6700 79.92% 63.29% None 1 920 89.03% 68.15%

(e) Logistic Regression

Table 6 represent the performance measures and the number of observations that falls into the different error types for each model and class

weight. CW stands for the different class weights, Type I and type II errors represent the number of observations that falls into each error. On

the left-hand side, we have the results from predicting on the training set, whereas, on the right-hand side, we have the results from predicting

on the test set.

As in earlier cases, Table 6 shows significant differences in the results obtained when
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predicting on the training set and the test set. Again, the random forest model displays a

noticeable decrease in ROC AUC scores. In contrast, linear models such as the penalized

logistic regression exhibit a distinct increase in performance scores when predicting on

the test set. Otherwise, Table 6 shows that the number of observations that fall into type

I errors increases, whereas the number of observations in type II errors decreases as the

class weights increase.

Moreover, in accordance with the decreased amount of type I errors due to lower class

weights, all the models show an improved accuracy rate. This could be due to the model

focusing less on predicting false negatives, and in turn, predicting more non-defaults and

type II errors. However, no clear pattern is observed for the ROC AUC score for the

different weights, particularly for the random forest and decision tree models. The scores

remain similar regardless of the class weight used. Whereas, we see that the regular

logistic regression model exhibits the most significant improvement in the ROC AUC

score among the models when using class weights. This strengthens the case for more

advanced models being able to handle large class imbalances better than simpler models

and suggests a trade-off between interpretability and the ability to handle advanced issues.

6.1.4 Opportunity costs vs credit losses

As previously discussed, the type I errors can be thought of as the opportunity cost for the

bank: these are the non-defaulting applicants that are incorrectly predicted as defaulted.

We define the opportunity cost as the revenue losses in terms of paid interest if the loan

were granted. In contrast, the type II errors portray the credit losses that the bank carries,

since these are the defaulted applicants that are wrongly classified as non-defaults. We

have specified the credit losses as the interest made based on the granted loan and the

amount of the loan, without any recovery rate. Figure 6 displays the credit losses and

the opportunity costs that the bank accounts for each model and class weight. The aim

is to find the weight that gives the bank minimum total losses, which is the sum of credit

losses and opportunity costs.
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Figure 6: Opportunity Costs vs Credit Losses predicting total defaults

(a) Training set

(b) Test set

Figure 6 displays the opportunity costs and credit losses in terms of interest and loan size, for both the training

set and test set. The x-axis displays the class weights for each model, and the y-axis represents the total losses in

billion SEK. The opportunity cost is represented by the purple field and the credit losses are represented by the

grey field. In both of the samples, each model has resulting opportunity cost and losses for each class weight.

As shown in figure 6, the credit losses are maximized, and the opportunity costs are

minimized when no class weights are used. Whereas the balanced class weight shows the

lowest credit losses and highest opportunity costs among the provided weights. However,

the overall results between the training set and test set differ significantly, which could

be explained by the different sample sizes or the sample variation. The credit losses are

expected to be higher in the training set compared to those in the test set due to the

aforementioned change in the bank’s cut-off strategy. The class weight that minimizes

total losses in the training set varies across the models. Among them, the random forest

consistently achieves the lowest losses, with minimum losses at a weight percentage of 40%.

In the test set, the models exhibit more similar results. The class weights that achieve the

lowest total losses are either 20% or no class weight. However, using these weights leads to
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maximized credit losses, as the models tend to predict more non-defaultable applicants.

6.2 12 months defaults

6.2.1 Importance of variables

Figure 7: Importance of Variables predicting 12m defaults

Figure 7 displays the top 10 features that the random forest model considers important when

predicting 12 month defaults. The importance scores are based on the Gini importance

which is normalized and sum up to 100%. In our dataset, there are a total of 30 variables.

The feature importance score for a given feature is calculated as the reduction in the

impurity of the tree when that feature is used for splitting the data.

In order to investigate if the most important variables differ between 12 months and total

default, we present Figure 7. It shows the top 10 important features for the random forest

when predicting the 12-month probability of default. Compared to total defaults, the new

variables of importance for defaults within 12 months are the number of creditors, which

indicates how many loans the applicant has and whether the customer has a mortgage

(UC creditusedhouse). If the applicant has a lower number of creditors and a mortgage

it would result in a lower default risk. In addition, the variable that is not of importance

anymore is the application amount. Instead, if the applicant has been granted a lower

amount than what they applied for is of more importance. Also, it is noticeable that

living in an exposed area has greater importance for the 12-month default.
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6.2.2 Performance of models for different class weights

We provide similar figures and tables as in the earlier case in order to analyze whether

the results differ between the total defaults and the results obtained from predicting

the defaults within 12 months. Thus, Figure 8 shows four different ROC curves for the

defaults within 12 months, which compares the ROC curves without any class weights to

the ROC curves obtained when using the balanced class weight.

Figure 8: ROC curves 12 month defaults

Figure 8 represent the ROC curves for the 12-month defaults for the different models on the training

and test dataset. The top row of ROC curves displays the results obtained by predicting defaults

on both the training and test sets without any class weight. In contrast, the bottom row exhibits

the results achieved by predicting defaults on both the training and test sets with a balanced class

weight.

In comparison to the previous section, there are more distinct differences for the 12-

month defaults, even if we observe similar patterns. We see a clear difference between the

ROC curves produced on the training set when using balanced class weights. The simpler
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models, such as the penalized and non-penalized logistic regressions, show a significant

improvement in performance. In contrast, the machine learning models have similar

performance in the training set regardless of class weight choice. Whereas, the random

forest model overfits with lower performance in the test set. Although, the performance of

the decision tree differs between the training and the test set. Unlike in the case of total

defaults, all machine learning models show signs of overfitting for the 12-month dataset.

The reason for this could be that modeling total defaults may provide a broader and

more representative view of the data, making it more difficult for the model to overfit on

specific patterns or noise in the data.

Figure 9: Resulting error rates for 12m defaults

(a) training set (b) test set

Figure 9 shows the error rates for the different models and each class weight for the 12-month defaults. Panel A shows the

resulting error rates obtained when predicting on the training set and panel B shows the resulting error rates from the test set.

The balanced weight is when the different classes are assigned the same importance and the ’none’ represent no class weight.

The pink area is the type 1 error rate and the purple area represent the type 2 error rate. The sum of these areas represents

the total errors for each model and weight.

Figures 9a and 9b shows the error rates for the different models and class weights.

Without any class weights, all models have a type II error rate of 100%. The indication

of this is that the models predict that all applicants are non-defaulting. This underscores

the importance of choosing the right weighting scheme. Similarly to the total defaults,

when the class weights are tuned, there is a distinct pattern that the type II error rates

decrease and the type I error rates increase. The risk for the bank becomes lower when

increasing the class weights, but the opportunity costs for the bank simultaneously in-

crease. Similarly, the class weights can, therefore, be illustrated as the amount of risk the

bank is willing to take.

The overall results indicate that the use of the ’balanced’ class weights generally leads

to the lowest total error rates across most models. In the training set, the random forest
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produces the lowest total error rate, while the logistic regression has the highest total

error rate, both using the balanced class weight. However, the results from the test set

are noticeably different, as the penalized logistic regression and PLTR produce the lowest

total error rate at 60% for the balanced class weight. However, the error rates for all

models are more similar, with the other error rates in the 60%-70% range.

More detailed results from predicting defaults within 12 months on both samples are

presented in Table 7. For each model and sample, we present the number of observations

that fall into the type I error and type II error. Additionally, we present the PCC accuracy

measure and the AUC score for two class weights. As a common pattern among all models

and as previously seen for the total defaults, the number of observations that fall into

type I error increases as we weigh the defaults higher than the non-defaults. At the same

time, the number of observations within the type II error decreases. In comparison to

the total defaults, it is more evident for the 12-month defaults that the more advanced

methods, such as random forests and decision trees, are almost unaffected by the choice of

class weights. At the same time, all of the methods that use logistic regression, including

the PLTR, show a significantly higher ROC AUC score when using larger weights for

defaults. Given the ROC AUC scores, the random forest model still performs the best in

general. However, when looking only at the balanced weights, the random forest, PLTR,

and the penalized logistic regression all perform quite similarly. Additionally, it is again

observed that the PCC score among the models increases in the test set, which is mostly

due to the aforementioned change in the bank’s cut-off strategy.
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Table 7: Class weights performances on 12m defaults

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 7335 658 83.99% 90.03% Balanced 1870 344 82.26% 75.57%

40% 3482 1274 90.47% 90.10% 40% 1025 429 88.35% 75.91%

None 0 3027 93.94% 91.14% None 0 679 94.56% 76.15%

(a) Random Forest

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 15928 852 66.39% 76.09% Balanced 3809 261 67.39% 70.66%

40% 7064 1627 82.59% 75.44% 40% 1753 394 82.80% 71.07%

None 0 3023 93.94% 75.13% None 0 680 94.55% 70.60%

(b) Decision Tree

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 14144 883 69.90% 76.94% Balanced 3809 261 67.39% 70.66%

40% 4739 2298 85.90% 64.97% 40% 1753 394 82.80% 71.07%

None 0 3027 93.94% 62.19% None 0 680 94.55% 70.60%

(c) PLTR

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 14402 901 69.35% 76.13% Balanced 3607 212 69.40% 74.76%

40% 4542 2318 86.26% 64.96% 40% 1215 466 86.53% 67.08%

None 0 3027 93.94% 62.11% None 0 679 94.56% 63.84%

(d) Penalized Logistic Regression

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 19315 1162 58.98% 63.77% Balanced 3579 305 68.88% 67.09%

40% 4543 2317 86.26% 64.96% 40% 752 519 89.82% 67.56%

None 0 3027 93.94% 62.11% None 0 680 94.55% 64.07%

(e) Logistic Regression

Table 7 represent the performance measures and the error types for each model and class weight. CW stands for class weights; balanced,

40%, and no class weight. The type I and type II errors represent the number of observations that falls into each error. Where PCC and

AUC scores are the performance measures. On the left-hand side, we have the results from predicting on the training set, whereas, on the

right-hand side, we have the results from predicting on the test set.

6.2.3 Opportunity costs vs credit losses

As discussed before, type I and type II errors have an economic interpretability of oppor-

tunity costs and credit losses. The aim is to be able to choose the weight that produces
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the lowest amount of total losses, which is the sum of the opportunity cost and credit

losses.

Figure 10: Opportunity Costs vs Interest Losses for 12m defaults

(a) Training set

(b) Test set

Figure 10 displays the resulting credit losses and opportunity costs for the defaults within 12 months. The

opportunity cost is represented by the purple field and the losses are represented by the grey field. In both of

the samples, each model has resulting opportunity cost and losses for each class weight. The y-axis represent the

total amount of losses expressed in billion SEK.

The resulting opportunity costs and credit losses are displayed in Figure 10. In general,

the 12-month default predictions exhibit lower credit losses in comparison to the total

defaults. The reason behind this is that the models predict fewer type II errors, and

instead, predict more type I errors resulting in higher opportunity costs. Since this is the

case, the most beneficial class weights are either using no class weights, or the slightly

tuned class weight percentage of 20%. When we do not use any class weight, all models

predict only non-defaultable applicants, which leads to a greater loan portfolio but also

greater credit losses.
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6.3 5 months defaults

6.3.1 Importance of variables

When predicting the defaults within 5 months, other features could be of importance as

they may be outstanding characteristics among these defaults in comparison to the earlier

cases. Therefore, we present Figure 11 that contains the top 10 important features for

the Random Forest when predicting the 5-month probability of default, also known as

the straightrollers. In comparison to previous datasets, how many creditors the applicant

has is the most important feature. If the applicant has many creditors, the risk of going

directly to debt collection without making any payments increases. In addition, a new

variable that has not been important in previous models is the debt ratio. This is defined

as the ratio between the applicants’ income and their total debt (including mortgage). A

larger ratio leads to higher default risk within 5 months.

Figure 11: Importance of Variables for 5m defaults

Figure 11 displays the top 10 features that the random forest model considers important

when predicting 5 month defaults. The importance scores are based on the Gini importance

which is normalized and sum up to 100%. In our dataset, there are a total of 30 variables.

The feature importance score for a given feature is calculated as the reduction in the

impurity of the tree when that feature is used for splitting the data.
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6.3.2 Performance of models for different class weights

The same analysis as previous cases is done for the defaults within 5 months. Overall,

the results from the defaults within 5 months are qualitatively similar to the results

from the defaults within 12 months. Because of this, we discuss the overall results from

the 5-month defaults compared to the 12-month defaults in this section and present the

resulting figures and tables in Appendix 8.3.

The resulting ROC curves are similar to those observed in the 12-month defaults, but

the shapes of the curves in the 5-month defaults are more distinct. The 5-month defaults

show significant differences in the ROC curves between the training set and the test set

for the Random forest and decision tree. Additionally, this difference is also shown in

the PCC and AUC scores. This could be due to the 5-month defaults providing even a

smaller view of the data, making it easier for the models to overfit on specific patterns and

noise in the data. In general, the resulting ROC curves, PCC and AUC scores strengthen

our previous results: the models based on logistic regression are more sensitive to class

imbalance than the tree-based models. Random forest is still the best-performing model,

whereas PLTR and penalized logistic regression produce slightly lower scores.

The error rates in general produce slightly lower error rates for the 5-month defaults in

comparison to the 12-month defaults, especially on the test set. This result is intriguing

and could depend on several factors. We conjecture that applicants that default within 5

months may have outstanding characteristics, such as a high number of loans, especially

Blanco loans, and higher debt ratios, making them easier to detect. Another reason could

also be the aforementioned change in the bank’s cut-off strategy. The opportunity cost

and the credit losses are also similar to the 12-month defaults. The results for the 5-month

defaults may be more distinct, which could be due to the defaults within the dataset being

considerably low. Consequently, using class weights increases the opportunity costs since

it increasingly predicts false positives, and simultaneously minimizes the credit losses at

a glacial pace. Because of this, the results suggest that the total losses are minimized

when using no class weight.

6.4 Prediction vs outcome

In this section, we compare the predicted default probabilities and the actual default rates

within 12 months. This is in order to compare the probability of default measures created

by Collector Bank, given that their measure is based on defaults within 12 months. Build-
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ing upon previous results, the predicted default probabilities are given by the Random

Forest and penalized logistic regression. The underlying cause of this is that the random

forest has favorable performance, meanwhile having less total loss in terms of opportunity

costs and credit losses. Whereas the penalized logistic regression has decent performance

while generating decent losses. Despite this, it is worth noting that the penalized logistic

regression is easier to interpret and the random forest is more complex. Furthermore, we

do not use any class weight for this analysis since this generates minimum losses in the

12-month default case.

Based on Figure 12, it is evident that the actual defaults fluctuate a lot during the

whole time period, especially during unexpected economic events. In particular, fluctu-

ations can be seen at the beginning of 2020, which was when the pandemic hit. During

this period there is an approximate 2 percentage points increase in the default rate. An-

other noticeable increase of 3 percentage points is at the beginning of 2022, which could

be mostly due to the increased inflation and higher interest rates. However, it is worth

mentioning that active loans within the last 12 months were dropped, making the average

higher due to fewer observations. Otherwise, the default rate in the dataset is consistently

in the 4%-6% range.

Figure 12: Prediction vs Outcome for 12m defaults

Figure 12 displays the average probability of default each month during the whole time period for all the customers. Benchmark

predictions stand for the model currently used by Collector Bank for estimating the probability of default. RF predictions

are the estimated probability for the random forest model and penalized LR predictions are the probabilities for the penalized

logistic regression model, both without any class weight. Actual defaults are the percentage of customers that actually do

default within 12 months. The dotted line represents the split into training and test samples.
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Initially, the penalized logistic regression overestimates the default risk compared to

the actual defaults. This might be because the actual defaults fluctuate, making the

model predict higher default risk on average. As the defaults are less fluctuating, the

overestimation diminishes over time and becomes more aligned with the actual defaults.

However, the predictions on the test set differ from the predictions on the training set, as

the model now underestimates the default risk. Therefore, it appears that the penalized

logistic regression has difficulties to learn complex patterns in the training data, making

the predictions on the test set less accurate.

The predictions on the training set made by the random forest differ substantially from

the penalized logistic regression. Initially, the random forest predicts almost 2% lower

default risk than the penalized logistic regression. The random forest has a smoother curve

that follows the actual defaults, even if there is an indication of minor underestimations

throughout the time period. However, both models have similar predictions on the test

set. Even if the default spikes are hard to capture, the random forest captures these

better than the penalized logistic regression. Hence, it is evident that the random forest

acquires the characteristics of the defaultable applicants, making it easier to detect these

during unexpected economic events.

Another interesting observation is that the benchmark underestimates the defaults

risk for the majority of the time period, especially during the time period of the training

sample. This is deviating compared to both the random forest and the penalized logistic

regression. The penalized logistic regression almost mirrors the benchmark predictions,

whereas the random forest is somewhere in between.

6.5 Discussion

In this section, the results are summarized and discussed. More specifically, the models’

performance with regard to accuracy and interpretability is discussed. In addition, we

discuss the models’ reliability and sustainability in terms of regulation and ethics.

Starting with the performance of the models, the predictions gathered from the ran-

dom forest have the best performance with regard to PCC and ROC-AUC scores. This

applies to total defaults, 12-month defaults, and 5-month defaults. Without any class

weight, the more advanced methods such as the random forest clearly outperform the

more simple methods based on the logistic regression. This is in accordance with the
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studies done by Brown & Mues (2012), Moscato et al. (2021), and Trivedi (2020). In

comparison to Dumitrescu et al. (2022), our findings suggest that the PLTR outperforms

the regular logistic regression, but performs equally to the penalized logistic regression

when predicting the total defaults, 12-month defaults, and the 5-month defaults. This

evidence suggests that the dummies created from the one- and two-step decision trees

have a minor effect on the performance of the PLTR model. Consequently, the penalized

logistic regression compensates in terms of interpretability and performance, still perform-

ing better than the regular logistic regression. Although interpretability is an important

factor, it comes as a cost of performance as the random forest still provides increased

accuracy.

When adding the class weights a different conclusion emerges, especially when pre-

dicting defaults within 12 months and 5 months. The findings in the results suggest that

the simpler models are more sensitive to class imbalance compared to the more advanced

models. Accordingly, the resulting performance for the PLTR and the penalized logistic

regression has drastically improved, especially when predicting defaults within 12 months

and 5 months. The same improvement is not as evident when applying the weights to

the total defaults, since the class imbalance is not equally comprehensive. Although the

random forest still exhibits the best performance, it is worth noting that the PLTR and

penalized logistic regression methods are not far behind in terms of their performance.

Consequently, if both interpretability and performance are taken into account, the penal-

ized logistic regression would be preferable. This can be explained by the fact that the

random forest is more complex and harder to interpret, which may not compensate for

slightly better performance. Even if the results from the PLTR when using class weights

are more in line with Dumitrescu et al. (2022), the performance is still equal to the pe-

nalized logistic regression. Again, this suggests that the non-linear effects captured by

the decision trees have a small impact.

Our analysis shows that most of the models perform the best in terms of total error

rate when using a balanced class weight, with the random forest having the lowest error

rate among all models. However, the use of class weights when predicting defaults also

implies a trade-off between accuracy and loan approvals. The suggested results from using

class weights imply that lower class imbalance would result in predicting the defaults more

accurately, but at the same time denying more applicants that do not actually default

(assuming the same cut-off strategy between different class imbalances). Hence, a higher

weight percentage on the minority class would result in higher opportunity costs but
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lower credit losses. With the same cut-off as the earlier case, a greater class imbalance

would make the bank grant more loans but it would increase the risk of defaults within

the portfolio. Ultimately, the choice of class weighting should be considered based on the

banks’ risk aversion and not only the minimization of errors.

Lastly, when considering which model to use, the bank should also carefully consider

what variables to include. For the 12-month defaults, exposed areas is the variable with

the third most explanatory variable for the probability of default. If this variable is in-

cluded in the model, the bank has to be aware of the Swedish Consumer Agency guidelines

on fair credit scoring. The guidelines include that lenders should be aware of any biases

against ethnic or socioeconomic groups and take steps to eliminate the bias. Even if in-

cluding the exposed areas as a variable increases the models explanatory power, there is

a risk of breaking the Consumer Agency Guidelines. In addition, if banks choose to use

the random forest model that shows the best performance, they also need to be aware

that there is a larger risk of bias when using more advanced methods. They also need to

be able to present the more advanced models in an easy and interpretable way.

7 Conclusion

In this paper, we investigate and compare different credit scoring models, especially

whether machine learning approaches outperform traditional models. We explore the

recently proposed method called the PLTR model, which is a combination of machine

learning and traditional logistic regression. Firstly, we compare the five models; random

forest, decisions tree, PLTR, penalized logistic regression, and regular logistic regression,

in terms of performance, such as accuracy measures and ROC curves, at different class

weights. Secondly, we examine the economic interpretations of the type I error and type II

error for each model at different class weights. Thirdly, we compare the predictions of the

defaults within 12 months from the best-performing models to the benchmark prediction

provided by the bank.

The main purpose of this paper was to identify the most effective and practical ap-

proach for credit scoring in the Swedish retail banking context. The findings suggest that

the model that most accurately predicts the defaults is the random forest, with minimized

error rates and costs. However, the random forest can be considered a ”black box” due to

its complexity, and gaining a full understanding of the models’ decision process is almost
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infeasible, which could be a potential problem for Swedish Consumer Credit legislation

and FSA guidelines. For this reason, the optimal substitute for the random forest is

the penalized logistic regression according to our findings. This model compensates for

interpretability due to its simplicity and transparency, but it comes with the cost of less

accurate predictions.

Another aspect to be considered is the use of class weighting the model, although

the more advanced models are proven to handle class imbalances better than the simpler

models. The rationale behind this is the trade-off between the potential opportunity costs

and credit losses that arises from incorrectly assigning applicants to a certain class. This

trade-off is therefore based on the risk that the bank is willing to take. Ultimately, the

banks’ risk aversion should be taken into account when choosing a credit scoring model.

It is evident that the results obtained from the training and test samples have sig-

nificant differences. We argue that the cause of this phenomenon is the modification of

the bank’s cut-off strategy between the two subsamples. A lower cut-off strategy leads

to fewer defaults, which increases the class imbalance in the test sample. Consequently,

these outcomes yield higher accuracy, as a greater number of non-default cases are cor-

rectly classified. Thus, an opportunity for future research would involve conducting an

analysis regarding the optimal approach for data splitting. For instance, comparing and

evaluating different ratios for data splitting in order to investigate the sample variation

further.
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8 Appendix

8.1 Descriptives

Table 8: Categorical variables description

Table 8 shows the categorical variables that are converted to continuous variables or binary variables. It displays the name of the

categorical variable, the different categories, and the value assigned for each category.

Categorical Variables Category Continuous

Municipal group 2023 Rural municipality 0

Rural municipality with tourism industry 1

Low-commute municipality close to larger city 2

Smaller city/town 3

Commuter municipality near smaller urban areas 4

Commuter municipality near big city 5

Commuter municipality near larger city 6

Metropolitan Cities 7

Bigger cities 8

NaN 9

Occupation Limited 0

Other 1

PermanentLessThan6Months 2

PermanentMoreThan6Months 3

Retired 4

SelfEmployed 5

Student 6

Unemployed 7

NaN 8

CivilStatus Cohabitant 0

Divorced 1

MarriedPartner 2

Separated 3

Single 4

Unmarried 5

WidowWidower 6

NaN 7

Exposed areas Not exposed areas 0

Particularly vulnerable areas 1

Exposed areas 2

Risk areas 3

Categorical Variables Category Binary

Role CoApplicant 0

MainApplicant 1

granted loweramount Granted 0

GrantedLowerAmount 1

gender Female 0

Male 1

New blancodebt Have blanco loan at application 0

Have no blanco loan at application 1

stated diff income Have not Stated higher income than reported in UC annual income (10000<) 0

Stated higher income than reported in UC annual income (10000>) 1

Dependent Variable Category Binary

binary debtcollection Is sent to debt collection: FALSE 0

Is sent to debt collection: TRUE 1

9
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8.2 Results from 12m default

Table 9: Class weights performances 12m defaults

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 7335 658 83.99% 90.03% Balanced 1870 344 82.26% 75.57%

45% 5195 954 87.68% 89.99% 45% 1870 380 85.31% 75.78%

40% 3482 1274 90.47% 90.10% 40% 1025 429 88.35% 75.91%

30% 1381 1894 93.44% 90.63% 30% 498 502 91.99% 76.19%

20% 264 2817 93.83% 81.09% 20% 163 601 93.88% 76.18%

None 0 3027 93.94% 91.14% None 0 679 94.56% 76.15%

(a) Random Forest

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 15928 852 66.39% 76.09% Balanced 3809 261 67.39% 70.66%

45% 14672 991 68.63% 75.39% 45% 3809 293 74.52% 71.31%

40% 7064 1627 82.59% 75.44% 40% 1753 394 82.80% 71.07%

30% 3057 2135 89.60% 75.93% 30% 742 515 89.93% 70.84%

20% 1543 2376 92.15% 74.52% 20% 325 593 92.64% 70.24%

None 0 3023 93.94% 75.13% None 0 680 94.55% 70.60%

(b) Decision Tree

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 14144 883 69.90% 76.94% Balanced 3809 261 67.39% 70.66%

45% 11134 1120 75.45% 76.92% 45% 3809 265 69.43% 70.97%

40% 4739 2298 85.90% 64.97% 40% 1753 394 82.80% 71.07%

30% 472 2925 93.20% 65.11% 30% 686 520 90.34% 70.83%

20% 2 3026 93.93% 64.41% 20% 319 587 92.74% 70.99%

None 0 3027 93.94% 62.19% None 0 680 94.55% 70.60%

(c) PLTR

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 14402 901 69.35% 76.13% Balanced 3607 212 69.40% 74.76%

45% 11273 1143 75.13% 76.13% 45% 3053 247 73.56% 74.78%

40% 4542 2318 86.26% 64.96% 40% 1215 466 86.53% 67.08%

30% 527 2927 93.08% 65.10% 30% 218 600 93.45% 67.01%

20% 5 3026 93.93% 64.36% 20% 6 677 94.53% 66.42%

None 0 3027 93.94% 62.11% None 0 679 94.56% 63.84%

(d) Penalized Logistic Regression

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 19315 1162 58.98% 63.77% Balanced 3579 305 68.88% 67.09%

45% 12066 1705 72.41% 64.49% 45% 3579 402 80.59% 67.45%

40% 4543 2317 86.26% 64.96% 40% 752 519 89.82% 67.56%

30% 527 2927 93.08% 65.10% 30% 76 652 94.17% 67.25%

20% 5 3026 93.93% 64.36% 20% 1 680 94.54% 66.39%

None 0 3027 93.94% 62.11% None 0 680 94.55% 64.07%

(e) Logistic Regression

Table 7 represent the performance measures and the error types for each model and class weight. CW stands for the class weights used. The

type I and type II errors represent the number of observations that falls into each error. Where PCC and AUC scores are the performance

measures. On the left-hand side, we have the results from predicting on the training set, whereas, on the right-hand side, we have the results

from predicting on the test set.
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8.3 Results from 5m default

Figure 13: ROC curve results in 5m defaults

The ROC curves in Figure 13 compare the outcomes of using a balanced class weight in the dataset with the

outcomes of using no class weights for the 5-month defaults. The top row of ROC curves displays the results

obtained by predicting defaults on both the training and test sets without any class weight. In contrast, the

bottom row exhibits the results achieved by predicting defaults on both the training and test sets with a balanced

class weight.
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Figure 14: Resulting Error rates from 5m defaults

(a) training set (b) test set

The graphs in Figure 14a and 14b show the error rates for the different models and each class weight for the 5-month defaults.

The balanced weight is when the different classes are assigned the same importance and the ’none’ represent no class weight.

The pink area is the type 1 error rate and the purple area represents the type 2 error rate. The sum of these areas represents

the total errors for each model and weight.
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Table 10: Class weights performances 5m defaults

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 6287 182 88.03% 92.73% Balanced 1009 66 92.05% 81.80%

45% 4715 238 90.84% 92.67% 45% 1009 74 94.10% 81.85%

40% 3451 311 93.04% 92.71% 40% 516 78 95.61% 82.04%

30% 1637 448 96.14% 92.92% 30% 266 100 97.29% 82.13%

20% 436 711 97.88% 83.78% 20% 71 134 98.48% 81.06%

None 0 823 98.48% 87.61% None 0 145 98.93% 81.50%

(a) Random Forest

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 17074 163 68.12% 81.89% Balanced 3653 46 72.63% 76.85%

45% 16448 173 69.26% 81.89% 45% 3653 46 73.82% 76.85%

40% 7314 369 85.79% 81.88% 40% 1411 70 89.04% 77.42%

30% 5793 423 88.50% 81.92% 30% 1058 82 91.57% 78.08%

20% 1857 599 95.46% 82.11% 20% 433 100 96.06% 77.54%

None 0 823 98.48% 81.79% None 0 145 98.93% 77.23%

(b) Decision Tree

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 13599 202 74.47% 82.30% Balanced 2872 41 78.45% 80.69%

45% 11203 246 78.82% 82.31% 45% 2872 47 82.49% 80.74%

40% 8991 304 82.81% 82.30% 40% 1797 52 86.32% 80.82%

30% 2128 679 94.81% 70.27% 30% 375 115 96.37% 71.92%

20% 57 820 98.38% 69.96% 20% 6 145 98.88% 72.04%

None 0 823 98.48% 65.42% None 0 145 98.93% 69.43%

(c) PLTR

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 14066 209 73.59% 81.37% Balanced 2623 41 80.29% 81.07%

45% 11438 247 78.39% 81.37% 45% 2623 50 84.29% 81.11%

40% 8894 474 82.67% 69.91% 40% 1665 86 87.04% 71.51%

30% 1971 685 95.09% 70.26% 30% 425 114 96.01% 71.89%

20% 50 819 98.39% 69.96% 20% 4 145 98.90% 72.03%

None 0 823 98.48% 81.18% None 0 145 98.93% 81.11%

(d) Penalized Logistic Regression

Training set Results Test set Results

CW Type I error Type II error PCC ROC AUC CW Type I error Type II error PCC ROC AUC

Balanced 19844 296 62.75% 68.96% Balanced 3630 61 72.69% 70.82%

45% 14006 376 73.40% 69.51% 45% 3630 70 80.84% 71.22%

40% 8892 474 82.68% 69.91% 40% 1665 86 87.04% 71.51%

30% 1971 685 95.09% 70.26% 30% 425 114 96.01% 71.89%

20% 50 819 98.39% 69.96% 20% 4 145 98.90% 72.03%

None 0 823 98.48% 65.61% None 0 145 98.93% 69.49%

(e) Logistic Regression

Table 10 represent the performance measures and the error types for each model and class weight, predicting 5-month defaults. CW stands

for the different class weights. The type I and type II errors represent the number of observations that falls into each error. Where PCC and

AUC scores are the performance measures. On the left-hand side, we have the results from predicting on the training set, whereas, on the

right-hand side, we have the results from predicting on the test set.
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Figure 15: Opportunity Costs vs Credit Losses 5m defaults

(a) Training set

(b) Test set

Figure 15 displays the resulting credit losses and opportunity costs for the defaults within 5 months.

Again, the opportunity cost is represented by the purple field, and the losses are represented by the

grey field. In both of the samples, each model has resulting opportunity cost and losses for each

class weight and model. The y-axis represent the amount of total losses, expressed in billion SEK.
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